纺织学报 ›› 2025, Vol. 46 ›› Issue (06): 23-30.doi: 10.13475/j.fzxb.20250104001
• 纤维新材料与纺织绿色发展青年科学家沙龙专栏 • 上一篇 下一篇
WANG Xu1, LI Huanyu1, FU Fan1, YANG Weifeng2, GONG Wei1,3(
)
摘要: 基于液态金属的导电纤维具有优异的导电性和良好的生物相容性,是智能服装的核心组成单元,但受限于液态金属高的表面张力,导致液态金属基导电纤维的连续化制备难以实现。通过镍粉的掺杂改性,制备了具有低表面张力的液态金属复合膏体,改善了液态金属在镀银聚酰胺纤维表面的润湿性能和涂覆能力,从而实现了液态金属复合纤维(LMC纤维)的连续化制备。结果表明:当镍粉质量分数为0.4%时,复合膏体在镀银聚酰胺纤维表面具有优异的涂覆性能,可制备得到电导率高达4.8×105 S/m的LMC纤维,其电导率与初始镀银聚酰胺纤维相比提升了728%;此外,LMC纤维具有优异的抗弯折能力和耐用性,在水中浸泡1 h后其电阻仅下降1.9%;同时可将其作为电热纤维,在1.62 V的低电压通电状态下迅速达到热平衡状态。
中图分类号:
| [1] |
罗梦颖, 陈慧君, 夏明, 等. 弹性导电复合纤维的制备及其应变与温度传感性能[J]. 纺织学报, 2024, 45(10): 9-15.
doi: 10.13475/j.fzxb.20230706201 |
|
LUO Mengying, CHEN Huijun, XIA Ming, et al. Preparation of elastic conductive composite fibers and their strain and temperature sensing properties[J]. Journal of Textile Research, 2024, 45(10): 9-15.
doi: 10.13475/j.fzxb.20230706201 |
|
| [2] | 吴帆, 梁凤玉, 肖奕葶, 等. 聚(3,4-乙撑二氧噻吩):聚苯乙烯磺酸基复合导电纤维的制备及其性能[J]. 纺织学报, 2024, 45(8): 99-106. |
| WU Fan, LIANG Fengyu, XIAO Yiyao, et al. Preparation and properties of poly(3,4-ethylpropodoxythiophene): polystyrene sulfonic acid-based composite conductive fiber[J]. Journal of Textile Research, 2024, 45(8): 99-106. | |
| [3] | 贺芃鑫, 蒲海红, 宋柏青, 等. 聚氨酯/导电炭黑复合纤维的制备及其柔性电热性能[J]. 纺织高校基础科学学报, 2022, 35(1):74-80. |
| HE Pengxin, PU Haihong, SONG Baiqing, et al. Preparation of polyurethane/conductive carbon black composite fiber and its flexible electrothermal proper-ties[J]. Journal of Basic Science of Textile Universities, 2022, 35(1):74-80. | |
| [4] | MA L, NIE Y, LIU Y, et al. Preparation of core/shell electrically conductive fibers by efficient coating carbonnanotubes on polyester[J]. Advanced Fiber Materials, 2021, 3(3): 180-191. |
| [5] | 方剑, 任松, 张传雄, 等. 智能可穿戴纺织品用电活性纤维材料[J]. 纺织学报, 2021, 42(9): 1-9. |
| FANG Jian, REN Song, ZHANG Chuanxiong, et al. Electroactive fiber materials for smart wearable textiles[J]. Journal of Textile Research, 2021, 42(9): 1-9. | |
| [6] | CHATTERJEE K, TABOR J, GHOSH T K. Electrically conductive coatings for fiber-based e-textiles[J]. Fibers, 2019. DOI: 10.3390/fib706051. |
| [7] | CHOI B, LEE J, HAN H, et al. Highly conductive fiber with waterproof and self-cleaning properties for textile electronics[J]. ACS Applied Materials & Interfaces, 2018, 10(42): 36094-36101. |
| [8] | LAN L, JIANG C, YAO Y, et al. A stretchable and conductive fiber for multifunctional sensing and energy harvesting[J]. Nano Energy, 2021.DOI:10.1016/j.nanoen.2021.105954. |
| [9] | ZHANG Y, HE Y, NIU L, et al. Enhanced sensing performance of superelastic thermally drawn liquid metal fibers through helical architecture while eliminating directional signal errors[J]. Journal of Materials Science & Technology, 2024, 195: 136-145. |
| [10] | WANG H, LI R, CAO Y, et al. Liquid metal fibers[J]. Advanced Fiber Materials, 2022, 4(5): 987-1004. |
| [11] | LAI Y C, LU H W, WU H M, et al. Elastic multifunctional liquid-metal fibers for harvesting mechanical and electromagnetic energy and as self-powered sensors[J]. Advanced Energy Materials, 2021.DOI:10.1002/aenm.20.2100411. |
| [12] | 杨金平, 孙润军, 程雪, 等. 碳纳米管/热塑性聚氨酯弹性导电复合纤维的制备及性能[J]. 纺织高校基础科学学报, 2024, 37(5): 20-27. |
| YANG Jinping, SUN Runjun, CHENG Xue, et al. Preparation and properties of carbon nanotube/thermoplastic polyurethane elastic conductive composite fibers[J]. Journal of Basic Science of Textile Universities, 2024, 37(5): 20-27. | |
| [13] | GUO R, WANG H, CHEN G, et al. Smart semiliquid metal fibers with designed mechanical properties for room temperature stimulus response and liquid welding[J]. Applied Materials Today, 2020. DOI:10.1016/j.apnt.2020.100738. |
| [14] | LI H, QU R, MA Z, et al. Permeable and patternable super-stretchable liquid metal fiber for constructing high-integration-density multifunctional electronic fibers[J]. Advanced Functional Materials, 2024. DOI:10.1002/adfm.2308120. |
| [15] | CHANG H, GUO R, SUN Z, et al. Direct writing and repairable paper flexible electronics using nickel-liquid metal ink[J]. Advanced Materials Interfaces, 2018.DOI:10.1002/adfm.1800571. |
| [16] | CHEN W, TANG Q, ZHONG W, et al. Directly printable and adhesive liquid metal ink for wearable devices[J]. Advanced Functional Materials, 2025.DOI:10.1002/adfm.2411647. |
| [1] | 张泽祺, 周涛, 周文琪, 范中尧, 杨佳蕾, 陈国印, 潘绍武, 朱美芳. 生理电信号监测用导电纤维及其研究进展[J]. 纺织学报, 2025, 46(05): 70-76. |
| [2] | 王军, 殷晓玉, 周晓琪, 王思远. 智能矫姿服装设计[J]. 纺织学报, 2025, 46(04): 179-186. |
| [3] | 严艺, 朱达辉. 老年智能服装研究现状与发展趋势[J]. 纺织学报, 2025, 46(04): 244-254. |
| [4] | 刘锦锋, 杜康存, 肖畅, 付少海, 张丽平. 多孔MXene/热塑性聚氨酯纤维的制备及其应力应变传感性能[J]. 纺织学报, 2025, 46(03): 41-48. |
| [5] | 侯煜杰, 刘欢欢, 王朝晖. 智能坐姿矫正服装研究现状与发展趋势[J]. 纺织学报, 2024, 45(08): 250-258. |
| [6] | 吴帆, 梁凤玉, 肖奕葶, 杨智博, 王文婷, 樊威. 聚(3,4-乙撑二氧噻吩):聚苯乙烯磺酸基复合导电纤维的制备及其性能[J]. 纺织学报, 2024, 45(08): 99-106. |
| [7] | 王建萍, 朱妍西, 沈津竹, 张帆, 姚晓凤, 于卓灵. 软体机器人在服装领域的应用进展[J]. 纺织学报, 2024, 45(05): 239-247. |
| [8] | 王馨雨, 田明伟. 具有距离监测与辅助提示功能的自闭症儿童智能服装设计[J]. 纺织学报, 2024, 45(03): 156-162. |
| [9] | 王中昱, 苏云, 王云仪. 机器学习建立的个体热舒适模型及其在服装领域的应用展望[J]. 纺织学报, 2023, 44(05): 228-236. |
| [10] | 赵智伟, 王子希, 杨世玉, 胡毅. 基于锦纶滤膜喷墨印花制备镓-铟合金液态金属电路[J]. 纺织学报, 2022, 43(12): 102-108. |
| [11] | 王晨露, 马金星, 杨雅晴, 韩潇, 洪剑寒, 占海华, 杨施倩, 姚绍芳, 刘姜乔娜. 聚苯胺涂层经编织物的应变传感性能及其在呼吸监测中的应用[J]. 纺织学报, 2022, 43(08): 113-118. |
| [12] | 薛超, 朱浩, 杨晓川, 任煜, 刘婉婉. 聚氨酯基碳纳米管-液态金属导电纤维的制备及其性能[J]. 纺织学报, 2022, 43(07): 29-35. |
| [13] | 黄锐, 肖爱民. 基于温湿度传感器的特护失禁内裤的研发[J]. 纺织学报, 2022, 43(07): 141-148. |
| [14] | 林文君, 缪旭红. 光导纤维在发光织物上的应用研究进展[J]. 纺织学报, 2021, 42(07): 169-174. |
| [15] | 李一飞, 郑敏, 常朱宁子, 李丽艳, 曹元鸣, 翟旺宜. 二维过渡金属碳化物(Ti3C2Tx)对棉针织物的功能整理及其性能分析[J]. 纺织学报, 2021, 42(06): 120-127. |
|
||