纺织学报 ›› 2025, Vol. 46 ›› Issue (09): 171-180.doi: 10.13475/j.fzxb.20250104801

• 纺织工程 • 上一篇    下一篇

非织造布结构及表面性质对反渗透膜支撑层和分离层性能影响

贾彦军1, 高璐2, 赵莹莹3, 荆兆敬2, 郭紫阳3, 王海涛3, 常娜2,4()   

  1. 1.天津工业大学 环境科学与工程学院, 天津 300387
    2.天津工业大学 纺织科学与工程学院, 天津 300387
    3.天津工业大学 材料科学与工程学院, 天津 300387
    4.先进分离膜材料全国重点实验室, 天津 300387
  • 收稿日期:2025-01-20 修回日期:2025-06-14 出版日期:2025-09-15 发布日期:2025-11-12
  • 通讯作者: 常娜(1984—),女,教授,博士。主要研究方向为新型膜材料、工业废水处理及零排放。E-mail:changna@tiangong.edu.cn
  • 作者简介:贾彦军(1981—),男,高级实验师。主要研究方向为反渗透膜结构与性能调控。
  • 基金资助:
    国家重点研发计划项目(2023YFE0101000);国家重点研发计划项目(2023YFC3206400);国家重点研发计划项目(24PTLYHZ00220);国家重点研发计划项目(24JCZDJC00600);山东省重点研发计划(2022CXGC020416);新疆生产建设兵团科技项目(2023AB043)

Influences of nonwoven fabric structure and surface properties on performance of polysulfone support layer and separation layer of reverse osmosis membranes

JIA Yanjun1, GAO Lu2, ZHAO Yingying3, JING Zhaojing2, GUO Ziyang3, WANG Haitao3, CHANG Na2,4()   

  1. 1. School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
    2. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
    3. School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
    4. State Key Laboratory of Advanced Separation Membrane Materials, Tianjin 300387, China
  • Received:2025-01-20 Revised:2025-06-14 Published:2025-09-15 Online:2025-11-12

摘要:

聚酰胺复合反渗透膜主要由非织造布织物层、聚砜超滤支撑层和聚酰胺分离层构成。非织造布的微观结构及特性对聚砜超滤支撑层的结构具有重要影响,为制备高性能的复合反渗透膜,通过采用相转化法,基于不同结构特性的聚对苯二甲酸乙二醇酯非织造布制备了一系列聚砜超滤基膜,探讨了非织造布平均截面密度、水接触角及温泽尔粗糙度等参数对基膜结构的影响。研究发现,当非织造布平均截面密度达到约0.75 g/(m2·μm)时,通过平衡铸膜液的毛细渗透使其均匀渗透非织造布厚度的1/2,可形成孔径小于35 nm,分布均匀的聚砜超滤基膜;同时,在表面水接触角为60°±5°、温泽尔粗糙度为1.15±0.1的协同作用下,可保证间苯二胺水溶液均匀分散,促进界面聚合反应,最终形成了均匀、致密的聚酰胺层,使反渗透膜的脱盐率超过97%。

关键词: 非织造布, 相转化法, 聚砜, 聚酰胺, 反渗透膜, 水处理

Abstract:

Objective The structure of polyamide composite reverse osmosis (RO) membranes primarily consists of a nonwoven fabric base layer, a polysulfone ultrafiltration (PSF) support layer, and a polyamide (PA) separation layer. The microstructure and properties of the nonwoven fabric directly influence the structure of the PSF support layer, which in turn affects the structure and performance of the RO membrane. A series of PSF base membranes and RO membranes were prepared based on nonwoven fabrics with different structural characteristics. The structure-performance relationships between the characteristics of the nonwoven fabric and the the PSF base membranes and RO membranes were investigated.

Method A series of polysulfone ultrafiltration base membranes were prepared using polyethylene terephthalate (PET) nonwoven fabric through a phase inversion process, and the corresponding RO membranes were fabricated by interfacial polymerization (IP). The influences of structural parameters, such as fiber packing density, water contact angle, and Wenzel roughness, of the nonwoven fabric on the structure of the polysulfone ultrafiltration base membranes were studied. Additionally, the RO membranes prepared were characterized using scanning electron microscope, and their separation performance was tested.

Results During the preparation of PSF-A base membranes, the surface was relatively hydrophilic (water contact angle of about 60°) with moderate Wenzel roughness because of the uniform fiber packing and moderate average cross-sectional density of approximately 0.75 g/(m2·μm) of nonwoven fabric A. This facilitated the casting of the PSF membrane solution and effectively permeated half of the nonwoven fabric A, resulting in a PSF-A base membrane with a moderate pore size (of about 35 nm) and a high surface porosity (of about 3.8%). This contributed to the effective permeation and uniform dispersion of the m-phenylenediamie (MPD) aqueous solution on the PSF membrane surface, leading to the formation of a uniform and dense RO-A membrane. Nonwoven fabric B exhibited severe fiber adhesion and the highest average cross-sectional density of approximately 0.85 g/(m2·μm), with a hydrophobic surface (water contact angle of about 84°) and the lowest Wenzel roughness. This reduced the effective permeation depth of the PSF casting solution (about one-third of nonwoven fabric B) while accelerating the phase inversion rate on the PSF membrane surface, resulting in a PSF-B base membrane with the largest pore size (about 45 nm), but fewer and unevenly distributed surface pores. During the preparation of the RO-B membrane, the MPD aqueous solution struggled to evenly disperse on the surface of the PSF-B membrane, causing the PA layer of the RO-B membrane to be uneven with more significant defects. Nonwoven fabric C had the loosest fiber packing with the lowest average cross-sectional density of about 0.50 g/(m2·μm), a strongly hydrophilic surface (water contact angle of about 12°), and the highest Wenzel roughness, which promoted the effective permeation (about two-thirds of nonwoven fabric C) of the PSF casting solution. The resulting PSF-C base membrane had the smallest pore size (of about 30 nm) and relatively concentrated surface pores. This led to the MPD aqueous solution being distributed only at the membrane pores of the PSF-C base membrane, resulting in an uneven distribution of the PA layer in the prepared RO-C membrane.

Conclusion In this study, a series of PSF base membranes were prepared by phase inversion process with three different types of nonwoven fabrics possessing varying properties. The influences of nonwoven fabric characteristics on the pore structure and performance of PSF base membranes were investigated. Additionally, the relationship between the pore structure of the PSF base membrane and the structure-performance of the polyamide layer in the RO membrane was explored. The results showed that when the fiber packing density of the nonwoven fabric is moderate (average cross-sectional density of approximately 0.75 g/(m2·μm)), the hydrophilicity is suitable (water contact angle of about 60°), and the surface Wenzel roughness is optimal (Wenzel roughness of about 1.15), it favors the permeation of the PSF casting solution (permeation depth of approximately half the thickness of the nonwoven fabric). The PSF base membrane prepared from this nonwoven fabric exhibited uniform pore size and distribution, which facilitated the orderly dispersion of MPD and promoted the interfacial polymerization (IP) reaction, resulting in a uniform and dense polyamide layer in the RO membrane, achieving the desalination rate of over 97%. In summary, by adjusting the pore structure and surface properties of the PSF base membrane, the nonwoven fabric effectively controlled the IP process. This study provides new insights into the development of high-performance RO membranes using nonwoven fabrics and PSF ultrafiltration base membranes.

Key words: nonwoven fabric, phase transition method, polysulfone, polyamide, reverse osmosis membrane, water treatment

中图分类号: 

  • TQ051.893

图1

非织造布表面电镜照片及实况图"

表1

非织造布相关参数"

非织造布类型 厚度/μm 面密度/(g·m-2) 平均截面密度/(g·(m2·μm)-1) 弯曲度 结构参数 表面纹理
A 99±0.3 78 0.784 5±0.3 1.30 314 光滑、无毛刺
B 100±0.2 85 0.850 0±0.2 1.42 458 光滑、无毛刺
C 155±0.2 80 0.506 3±0.2 1.16 299 粗糙、有毛刺

图2

非织造布的透气性与孔径及分布"

图3

非织造布红外谱图"

图4

非织造布水接触角及温泽尔粗糙度"

图5

PSF超滤基膜表面及截面电镜图"

图6

PSF超滤基膜及PSF层厚度"

图7

PSF超滤基膜表面孔隙率及孔径分布"

图8

PSF超滤基膜的纯水通量及BSA截留率"

图9

基于复合非织造布PSF超滤膜所制备的反渗透膜PA层电镜照片"

图10

基于复合非织造布PSF超滤膜制备的反渗透膜纯水通量与脱盐率"

[1] TAKEUCHI K, CRUZ-SILVA R, FUJISHIGE M, et al. Preparation of polysulfone support for higher-performance reverse osmosis membranes[J]. J Environ Chem Eng, 2022, 10(3): 107860.
doi: 10.1016/j.jece.2022.107860
[2] PENG L E, GAN Q, YANG Z, et al. Deciphering the role of amine concentration on polyamide formation toward enhanced RO performance[J]. ACS ES&T Engineering, 2022, 2(5): 903-912.
[3] JING Z, WANG J, GAO Z, et al. Regulation of micro-structure and surface property of SWRO membrane via introducing albumin into polyamide layer for improving permselectivity[J]. Desalination, 2023, 555: 116551.
doi: 10.1016/j.desal.2023.116551
[4] LEE J, WANG R, BAE T H. High-performance reverse osmosis membranes fabricated on highly porous microstructured supports[J]. Desalination, 2018, 436: 48-55.
doi: 10.1016/j.desal.2018.01.037
[5] ZHANG Q, ZHOU R, PENG X, et al. Development of support layers and their impact on the performance of thin film composite membranes (TFC) for water treatment[J]. Polymers (Basel), 2023, 15(15): 3290.
doi: 10.3390/polym15153290
[6] GUAN P, WANG D. The improvement of CTA forward osmosis membrane performance by hydrophilic modification on interface between support layer and non-woven fabric[J]. Desalination and Water Treatment, 2016, 57(57):27501-27518.
[7] DLAMINI D S, QUEZADA-RENTERIA J A, WU J, et al. On the role of the porous support membrane in seawater reverse osmosis membrane synthesis, properties and performance[J]. J Membr Sci, 2024, 708: 123032.
doi: 10.1016/j.memsci.2024.123032
[8] MOKARIZADEH H, MOAYEDFARD S, MALEH M S, et al. The role of support layer properties on the fabrication and performance of thin-film composite membranes: the significance of selective layer-support layer connectivity[J]. Sep Purif Technol, 2022, 278: 119451.
doi: 10.1016/j.seppur.2021.119451
[9] ZHAO Y, LAI G S, WANG Y, et al. Impact of pilot-scale PSF substrate surface and pore structural properties on tailoring seawater reverse osmosis membrane performance[J]. J Membr Sci, 2021, 633: 119395.
doi: 10.1016/j.memsci.2021.119395
[10] TANG Y, XU J, GAO C. Ultrafiltration membranes with ultrafast water transport tuned via different substrates[J]. Chemical Engineering Journal, 2016, 303: 322-330.
doi: 10.1016/j.cej.2016.06.010
[11] WANG S, LI T, CHEN C, et al. Non-woven PET fabric reinforced and enhanced the performance of ultrafiltration membranes composed of PVDF blended with PVDF-g-PEGMA for industrial applications[J]. Appl Surf Sci, 2018, 435: 1072-1079.
doi: 10.1016/j.apsusc.2017.11.193
[12] WU H, ZHAO H, LIN Y, et al. Fabrication of polysulfone membrane with sponge-like structure by using different non-woven fabrics[J]. Sep Purif Technol, 2022, 297: 121553.
doi: 10.1016/j.seppur.2022.121553
[13] SAIRAM M, SEREEWATTHANAWUT E, LI K, et al. Method for the preparation of cellulose acetate flat sheet composite membranes for forward osmosis-desalination using MgSO4 draw solution[J]. Desalination, 2011, 273(2/3): 299-307.
doi: 10.1016/j.desal.2011.01.050
[14] TIRAFERRI A, YIP N Y, PHILLIP W A, et al. Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure[J]. J Membr Sci, 2011, 367(1/2): 340-352.
doi: 10.1016/j.memsci.2010.11.014
[15] GAO L, ZHAO Y, HUO X, et al. Investigation of the pore structure and surface properties of polysulfone membrane on the resultant polyamide layer and the performance of the reverse osmosis membrane[J]. J Taiwan Inst Chem Eng, 2025, 173: 106147.
doi: 10.1016/j.jtice.2025.106147
[16] XU R, GAO F, WU Y, et al. Influences of support layer hydrophilicity on morphology and performances of polyamide thin-film composite membrane[J]. Sep Purif Technol, 2022, 281: 119884.
doi: 10.1016/j.seppur.2021.119884
[17] YAN W T, WANG Z, WU J H, et al. Enhancing the flux of brackish water TFC RO membrane by improving support surface porosity via a secondary pore-forming method[J]. J Membr Sci, 2016, 498: 227-241.
doi: 10.1016/j.memsci.2015.10.029
[18] TAMAYOL A, BAHRAMI M. Transverse permeability of fibrous porous media[J]. Phys Rev E, 2011, 83(4): 046314.
doi: 10.1103/PhysRevE.83.046314
[19] PHILLIP W A, YONG J S, ELIMELECH M. Reverse draw solute permeation in forward osmosis: modeling and experiments[J]. Environ Sci Technol, 2010, 44(13): 5170-5176.
doi: 10.1021/es100901n
[20] 刘倩男. 分离膜支撑体用湿法非织造材料的制备及性能研究[D]. 天津: 天津工业大学,2021:1-63.
LIU Qiannan. Preparation and performance study of wet-laid nonwoven materials for separation membrane supports[D]. Tianjin: Tiangong Uiversity,2021:1-63.
[21] DAS D, ISHTIAQUE S M, DAS S. Influence of fibre cross-sectional shape on air permeability of non-wovens[J]. Fibers Polym, 2015, 16(1): 79-85.
doi: 10.1007/s12221-015-0079-9
[22] MISDAN N, LAU W J, ISMAIL A F, et al. Formation of thin film composite nanofiltration membrane: effect of polysulfone substrate characteristics[J]. Desalination, 2013, 329: 9-18.
doi: 10.1016/j.desal.2013.08.021
[23] OH S J, KIM N, LEE Y T. Preparation and characterization of PVDF/TiO2 organic-inorganic composite membranes for fouling resistance improve-ment[J]. J Membr Sci. 2009, 345(1/2): 13-20.
doi: 10.1016/j.memsci.2009.08.003
[24] VANDEZANDE P, LI X F, GEVERS L E M, et al. High throughput study of phase inversion parameters for polyimide-based SRNF membranes[J]. J Membr Sci, 2009, 330(1-2): 307-318.
doi: 10.1016/j.memsci.2008.12.068
[25] SHI M, WANG Z, ZHAO S, et al. A support surface pore structure re-construction method to enhance the flux of TFC RO membrane[J]. J Membr Sci, 2017, 541: 39-52.
doi: 10.1016/j.memsci.2017.06.087
[26] DING S G, CHENG X Q, JIANG Z X, et al. Pore morphology control and hydrophilicity of polyacrylonitrile ultrafiltration membranes[J]. J Appl Polym Sci, 2015, 132(20): 41991.
[27] SABZI Dizajikan B, ASADOLLAHI M, MUSAVI S A, et al. Preparation of poly(vinyl chloride) (PVC) ultrafiltration membranes from PVC/additive/solvent and application of UF membranes as substrate for fabrication of reverse osmosis membranes[J]. J Appl Polym Sci, 2018, 135(21): 46267.
doi: 10.1002/app.v135.21
[28] GENG H, HUO X, JING Z, et al. Monitoring the process of interfacial polymerization for fabrication of polyamide reverse osmosis membrane via molecular simulation based on π-π interaction between surfactant and monomer[J]. J Membr Sci, 2024, 713: 123369.
doi: 10.1016/j.memsci.2024.123369
[29] JING Z, WANG J, HUO X, et al. Exploration of the critical structural parameter of polyamide decisive for permeability based on SWRO membrane regulated by environmental-friendly solvent gamma-valero-lactone[J]. J Membr Sci, 2024, 709: 123093.
doi: 10.1016/j.memsci.2024.123093
[1] 李雨洁, 王承勤, 王伟, 袁如超, 俞建勇, 李发学. 聚酰胺6基弹性体及其并列弹性纤维的制备及其性能[J]. 纺织学报, 2025, 46(09): 46-56.
[2] 孙鹤情, 赵聪颖, 吴冰雪, 张幼维. 长效型抗菌聚酰胺 66 纤维的制备及其性能[J]. 纺织学报, 2025, 46(09): 66-73.
[3] 王泓力, 张辉, 刘建宇, 尉海泽, 张雅宁, 王丽丽, 许学潮. 棉基生物炭-ZIF-L(Zn)-壳聚糖/聚丙烯复合膜的制备及其吸附-光催化性能[J]. 纺织学报, 2025, 46(09): 84-93.
[4] 王浩鹏, 张佳文, 牛云蔚, 柯勤飞, 赵奕. 芳香抗菌双包络结构芳樟醇/聚酰胺/玉米醇溶蛋白微纳米非织造材料[J]. 纺织学报, 2025, 46(09): 94-103.
[5] 刘美, 崔丽娜, 关福旺, 李甫, 费鹏飞, 马驰, 王华平. 一次性卫生用竹浆纤维水刺非织造材料的疏水改性及其性能[J]. 纺织学报, 2025, 46(09): 188-196.
[6] 左卓帆, 卢凯亮, 李倩雯, 张维. 基于铝镁合金阳极的靛蓝染色废水电絮凝处理效能优化[J]. 纺织学报, 2025, 46(09): 197-204.
[7] 张新宇, 金小培, 朱金唐, 崔华帅, 吴鹏飞, 崔宁, 史贤宁. 聚乳酸熔喷非织造布热尺寸稳定性提升方法[J]. 纺织学报, 2025, 46(08): 127-135.
[8] 廖梦蝶, 肖汪洋, 李鸿鑫, 赵漫, 张须臻, 王秀华. 聚酰胺6/共聚酰胺偏心皮芯复合纤维的制备与性能[J]. 纺织学报, 2025, 46(07): 53-61.
[9] 徐丽亚, 汪瑱, 杨鸿杰, 汪蔚. 氧化锌-银/生物基聚酰胺56纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2025, 46(07): 37-45.
[10] 项文龙, 杨静冉, 肖晓珍. 铁钴双金属有机框架/稻谷壳复合材料的制备及其染料脱色性能[J]. 纺织学报, 2025, 46(06): 178-186.
[11] 邱月, 杨询, 李昊, 李海东, 吴国忠, 张彩丹. 聚琥珀酰亚胺纳米纤维膜改性及其染料吸附性能[J]. 纺织学报, 2025, 46(06): 88-95.
[12] 王薇, 高建南, 裴笑涵, 陆鑫, 孙银银, 吴建兵. 纤维素/甲基三甲氧基硅烷气凝胶的制备及其油水分离效能[J]. 纺织学报, 2025, 46(05): 135-142.
[13] 闫静, 王亚倩, 刘晶晶, 李好义, 杨卫民, 康卫民, 庄旭品, 程博闻. 熔融静电纺长丝纱的制备及其在摩擦纳米发电机中的应用[J]. 纺织学报, 2025, 46(05): 23-29.
[14] 金汝诗, 陈万明, 刘国金, 刘承海, 戚栋明, 翟世民. 生物炭在印染废水处理中的应用研究进展[J]. 纺织学报, 2025, 46(04): 235-243.
[15] 张蕊, 叶苏娴, 王建, 邹专勇. 全织物型离电式柔性压力传感器的制备及其性能[J]. 纺织学报, 2025, 46(02): 113-121.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!