纺织学报 ›› 2025, Vol. 46 ›› Issue (09): 9-18.doi: 10.13475/j.fzxb.20250306301
• 纺织科技新见解学术沙龙专栏:伪装与电磁屏蔽技术及应用 • 上一篇 下一篇
摘要: 为提升电磁波吸收材料的综合性能,满足复杂电磁环境中防护需求,利用玻璃包覆磁性非晶态合金纤维(GMAFs)的优异磁/介电性能、无定形结构特征,以及纤维强各向异性等优势,设计了不同结构参数的单层样品。表征了GMAFs物理性能参数,分析其在不同条件下的电磁响应特性,阐明了其吸波材料的损耗机制。结果表明:连续的GMAFs具有明显的方向性,适合做电磁屏蔽材料,而短切应用的GMAFs不仅具备优异吸波性能,其无序分布还赋予材料宏观各向同性,具有重要科研和工程价值;GMAFs的非晶软磁合金状态和皮芯结构可显著提升材料的电磁损耗特性,增强吸波性能;同时,通过精确调控纤维线密度、成分等参数以及包覆层特性可有效调节材料电磁谐振行为,为开发可调谐吸波材料提供新思路。得益于其特殊的制备工艺和结构特征,基于GMAFs的复合材料展现出显著的应用潜力,有望为新一代高性能微波吸收器的开发提供创新解决方案。
中图分类号:
| [1] |
FAN W, QU H J, ZHAO Q L, et al. Cobalt phosphide decorated on reduced graphene oxide with enhanced microwave absorption performance[J]. Journal of Alloys and Compounds, 2022, 925: 166636.
doi: 10.1016/j.jallcom.2022.166636 |
| [2] |
JIA Z R, SUN L F, GAO Z G, et al. Modulating magnetic interface layer on porous carbon heterostructures for efficient microwave absorption[J]. Nano Research, 2024, 17(11): 10099-10108.
doi: 10.1007/s12274-024-6939-0 |
| [3] |
LAN D, HU Y, WANG M, et al. Perspective of electromagnetic wave absorbing materials with continuously tunable effective absorption frequency bands[J]. Composites Communications, 2024, 50: 101993.
doi: 10.1016/j.coco.2024.101993 |
| [4] |
KIM M S, MIN E H, KOH J G. Comparison of the effects of particle shape on thin FeSiCr electromagnetic wave absorber[J]. Journal of Magnetism and Magnetic Materials, 2009, 321(6): 581-585.
doi: 10.1016/j.jmmm.2008.09.033 |
| [5] |
WANG C J, WANG Y X, JIANG H T, et al. Three-dimensional bamboo-like amorphous N/S Co-doped carbon nanotubes encapsulated with Cu nanoparticles/carbon fiber heterostructures for boosting electromagnetic wave absorbing properties[J]. Ceramics International, 2023, 49(2): 2792-2805.
doi: 10.1016/j.ceramint.2022.09.261 |
| [6] |
SUN J H, HUANG X X, LIU Y H, et al. Enhanced microwave absorption performance originated from interface and unrivaled impedance matching of SiO2/carbon fiber[J]. Applied Surface Science, 2023, 623: 157029.
doi: 10.1016/j.apsusc.2023.157029 |
| [7] |
ZHAO X X, HUANG Y, JIANG H Y, et al. Carbon fibers coated with floral MoSe2 are applied to high-performance electromagnetic absorbing materials[J]. Journal of Alloys and Compounds, 2024, 986: 174067.
doi: 10.1016/j.jallcom.2024.174067 |
| [8] |
ENTEZARI H, ALMASI KASHI M, ALIKHANZADEH-ARANI S, et al. In situ precipitation synthesis of FeNi/ZnO nanocomposites with high microwave absorption properties[J]. Materials Chemistry and Physics, 2021, 266: 124508.
doi: 10.1016/j.matchemphys.2021.124508 |
| [9] |
FAN B B, LI N, DAI B Z, et al. Investigation of adjacent spacing dependent microwave absorption properties of lamellar structural Ti3C2Tx MXenes[J]. Advanced Powder Technology, 2020, 31(2): 808-815.
doi: 10.1016/j.apt.2019.11.035 |
| [10] | 尚楷, 武志红, 张路平, 等. 纤维吸波材料研究进展[J]. 化工新型材料, 2019, 47(9): 24-27. |
| SHANG Kai, WU Zhihong, ZHANG Luping, et al. Research progress of fiber absorbing material[J]. New Chemical Materials, 2019, 47(9): 24-27. | |
| [11] |
ZHANG B S, FENG Y, XIONG J, et al. Microwave-absorbing properties of de-aggregated flake-shaped carbonyl-iron particle composites at 2-18 GHz[J]. IEEE Transactions on Magnetics, 2006, 42(7): 1778-1781.
doi: 10.1109/TMAG.2006.874188 |
| [12] | 吴挺华. 玻璃包覆非晶磁性微丝的制备与电磁特性研究[D]. 武汉: 华中科技大学, 2006:1-50. |
| WU Tinghua. Synthesis and electromagnetic properties of amouphous glass-covered metallic microwires[D]. Wuhan: Huazhong University of Science and Technology, 2006:1-50. | |
| [13] | 苏飞, 王晓艳, 姬金祖. 非晶铁磁纤维复合材料吸波性能的应力可调性实验研究[J]. 实验力学, 2012, 27(1): 108-113. |
| SU Fei, WANG Xiaoyan, JI Jinzu. Experimental investigations on stress adjustability of wave absorbing properties for amorphous ferromagnetic fiber filled composites[J]. Journal of Experimental Mechanics, 2012, 27(1): 108-113. | |
| [14] |
DI Y J, JIANG J J, BIE S W, et al. Collective length effect on the magnetostatic properties of arrays of glass-coated amorphous alloy microwires[J]. Journal of Magnetism and Magnetic Materials, 2008, 320(3/4): 534-539.
doi: 10.1016/j.jmmm.2007.07.015 |
| [15] | 邸永江, 江建军, 吴挺华, 等. 玻璃包覆磁性微丝的制备及微波电磁性能[J]. 功能材料, 2007, 38(2): 173-175. |
| DI Yongjiang, JIANG Jianjun, WU Tinghua, et al. Synthesis and microwave electromagnetic properties of glass-coated magnetic microwires[J]. Journal of Functional Materials, 2007, 38(2): 173-175. | |
| [16] | RAU M, IFTEMIE A, BALTAG O, et al. The study of the electromagnetic shielding properties of a textile material with amorphous microwire[J]. Advances in Electrical and Computer Engineering, 2011, 11(1): 17-22. |
| [17] | BOEHHOE O. Art of radar deception-cloaks of invisi-bility for military equipment[EB/OL].(2020-5-25). https://glavportal.com. |
| [18] |
SHI Y Y, YU L J, LI K, et al. Well-matched impedance of polypyrrole-loaded cotton non-woven fabric/polydimethylsiloxane composite for extraordinary microwave absorption[J]. Composites Science and Technology, 2020, 197: 108246.
doi: 10.1016/j.compscitech.2020.108246 |
| [19] |
JI H, XIAO H, RUAN X Y, et al. An ultrathin ultralight electromagnetic absorber based on shortcut glass-coated amorphous magnetic fiber/salisbury-like screen[J]. Composite Structures, 2025, 353: 118667.
doi: 10.1016/j.compstruct.2024.118667 |
| [20] |
WANG X D, LIU J S, QIN F X, et al. Microwave absorption properties of FeSiBNbCu glass-covered amorphous wires[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(8): 2574-2580.
doi: 10.1016/S1003-6326(14)63385-9 |
| [21] | GUEYE P G B, SÁNCHEZ J L, NAVARRO E, et al. Control of the length of Fe73.5Si13.5Nb3Cu1B9 microwires to be used for magnetic and microwave absorbing purposes[J]. ACS Applied Materials & Interfaces, 2020, 12(13): 15644-15656. |
| [22] |
LIANG H S, LIU J L, ZHANG Y, et al. Ultra-thin broccoli-like SCFs@TiO2 one-dimensional electro-magnetic wave absorbing material[J]. Composites Part B: Engineering, 2019, 178: 107507.
doi: 10.1016/j.compositesb.2019.107507 |
| [23] | 邹佩倚, 张森, 杨润芝, 等. 硼掺杂对螺旋碳纳米管微波吸收性能的影响研究[J]. 现代物理, 2021, 11(3): 52-58. |
|
ZOU Peiyi, ZHANG Sen, YANG Runzhi, et al. Effect of boron doping on microwave absorption properties of helical carbon nanotubes[J]. Modern Physics, 2021, 11(3): 52-58.
doi: 10.12677/MP.2021.113007 |
|
| [24] |
LIU Y J, SUN X, SONG Z M, et al. Parallel-orientation-induced strong resonances enable Ni submicron-wire array: an ultrathin and ultralight electromagnetic wave absorbing material[J]. Advanced Electronic Materials, 2021, 7(3): 2000970.
doi: 10.1002/aelm.v7.3 |
| [25] | 冯帅博, 强荣, 邵玉龙, 等. 丝瓜络衍生碳纤维基复合材料的电磁波吸收性能[J]. 纺织学报, 2023, 44(2): 69-75. |
| FENG Shuaibo, QIANG Rong, SHAO Yulong, et al. Microwave absorption performance of loofah sponge derived carbon fiber composites[J]. Journal of Textile Research, 2023, 44(2): 69-75. |
| [1] | 于梦菲, 高文丽, 任婧, 曹雷涛, 彭若铉, 凌盛杰. 摩擦纳米发电机用皮芯结构纤维的制备及其性能[J]. 纺织学报, 2025, 46(05): 1-9. |
| [2] | 李一, 张恒宇, 郭雯卓, 陈剑英, 王妮, 肖红. 阻抗阶跃渐变层结构纤维素/Ti3C2Tx气凝胶材料的制备及其吸波性能[J]. 纺织学报, 2025, 46(03): 17-26. |
| [3] | 房磊, 刘秀明, 贾娇娇, 蔺志浩, 任燕飞, 侯凯文, 巩继贤, 扈延龄. 高分子量壳聚糖皮芯结构微纳米纤维膜制备[J]. 纺织学报, 2024, 45(09): 1-9. |
| [4] | 冯帅博, 强荣, 邵玉龙, 杨啸, 马茜, 陈博文, 陈熠, 高明洋, 陈彩虹. 丝瓜络衍生碳纤维基复合材料的电磁波吸收性能[J]. 纺织学报, 2023, 44(02): 69-75. |
| [5] | 郭明瑞, 顾银华, 高卫东. 棉/涤皮芯结构粗纱参数对其细纱结构与性能的影响[J]. 纺织学报, 2022, 43(06): 57-62. |
| [6] | 叶伟, 余进, 龙啸云, 孙启龙, 马岩. 丝瓜络基碳材料的电磁波吸收性能[J]. 纺织学报, 2022, 43(04): 33-39. |
| [7] | 强荣, 冯帅博, 马茜, 陈博文, 陈熠. 钴/碳纤维复合材料的制备及其吸波性能[J]. 纺织学报, 2022, 43(02): 30-36. |
| [8] | 赵金洋, 孙窈, 张鑫, 张悦悦, 赵浩阅, 夏鑫. 锡/碳纳米纤维锂电负极材料形貌结构再造及其机制[J]. 纺织学报, 2019, 40(08): 7-13. |
| [9] | 姜岩;王业宏;姜丽;张大庆;王善元. 长丝变形纱的皮芯结构及其参数[J]. 纺织学报, 2009, 30(08): 30-33. |
| [10] | 张建春;施楣梧;朱华;来侃. Lyocell纤维皮芯结构的研究[J]. 纺织学报, 2000, 21(01): 7-10. |
| [11] | 王华平;余晓蔚;韩淑丽. 熔纺中空纤维皮芯结构的动力学模拟──冷却条件对皮芯差异的影响[J]. 纺织学报, 1999, 20(03): 15-18. |
| [12] | 王华平;余晓蔚;韩淑丽. 熔纺中空纤维皮芯结构的动力学模拟──泵供量、卷绕速度、熔体温度、切片粘度的影响[J]. 纺织学报, 1999, 20(02): 7-10. |
|
||