纺织学报 ›› 2025, Vol. 46 ›› Issue (09): 9-18.doi: 10.13475/j.fzxb.20250306301

• 纺织科技新见解学术沙龙专栏:伪装与电磁屏蔽技术及应用 • 上一篇    下一篇

玻璃包覆磁性非晶态合金纤维的结构与电磁响应特性

季惠, 肖红()   

  1. 军事科学院系统工程研究院 军需工程技术研究所, 北京 100010
  • 收稿日期:2025-03-27 修回日期:2025-06-14 出版日期:2025-09-15 发布日期:2025-11-12
  • 通讯作者: 肖红(1976—),女,高级工程师,博士。主要研究方向为功能性纺织品。E-mail:76echo@vip.sina.com
  • 作者简介:季惠(1996—),女,博士。主要研究方向为电磁功能纺织材料。

Structure and electromagnetic response properties of glass-coated magnetic amorphous alloy fibers

JI Hui, XIAO Hong()   

  1. Institute of Quartermaster Engineering & Technology, Institute of Systems Engineering, Academy of Military Sciences, Beijing 100010, China
  • Received:2025-03-27 Revised:2025-06-14 Published:2025-09-15 Online:2025-11-12

摘要: 为提升电磁波吸收材料的综合性能,满足复杂电磁环境中防护需求,利用玻璃包覆磁性非晶态合金纤维(GMAFs)的优异磁/介电性能、无定形结构特征,以及纤维强各向异性等优势,设计了不同结构参数的单层样品。表征了GMAFs物理性能参数,分析其在不同条件下的电磁响应特性,阐明了其吸波材料的损耗机制。结果表明:连续的GMAFs具有明显的方向性,适合做电磁屏蔽材料,而短切应用的GMAFs不仅具备优异吸波性能,其无序分布还赋予材料宏观各向同性,具有重要科研和工程价值;GMAFs的非晶软磁合金状态和皮芯结构可显著提升材料的电磁损耗特性,增强吸波性能;同时,通过精确调控纤维线密度、成分等参数以及包覆层特性可有效调节材料电磁谐振行为,为开发可调谐吸波材料提供新思路。得益于其特殊的制备工艺和结构特征,基于GMAFs的复合材料展现出显著的应用潜力,有望为新一代高性能微波吸收器的开发提供创新解决方案。

关键词: 吸波材料, 玻璃包覆磁性非晶合金纤维, 吸波剂, 电磁波吸收, 电磁响应特性, 可调谐功能, 皮芯结构

Abstract:

Objective With the rapid advancement of wireless communication technologies, radar systems and electronic devices, the development of high-performance electromagnetic absorbing materials has become a crucial research direction in the field of functional materials. Among various absorbing material systems, the intrinsic properties of wave-absorbing agents, as the core functional component, play a decisive role in determining the overall electromagnetic wave absorption performance of the materials. Glass-coated magnetic amorphous alloy fibers (GMAFs), as a material with a special structure and multiple loss mechanisms, has gradually attracted the attention of researchers. However, the current research work on GMAFs in the field of wave absorption is limited to the basic characterization of the electromagnetic properties of composite materials.

Method Based on the analysis of the physical characteristics and electromagnetic properties of GMAFs, this paper reports the design of different configuration states, preparation of single-layer absorbing samples, and systematic studies of the physical properties of GMAFs and their electromagnetic response mechanisms under different conditions. It focuses on discussing the influence of factors such as the continuity of fibers, distribution state, line density parameters, core layer composition, structural features, and crystal state on the performance of the GMAFs. Meanwhile, by comparing and analyzing the absorbing performance of different fiber-based absorbing materials, the unique advantages of GMAFs are deeply revealed.

Results This study systematically reveals the structure-activity relationship between the electromagnetic response characteristics and physical properties of GMAFs. GMAFs integrate the superior magnetic/dielectric properties of amorphous soft magnetic alloys, their distinctive amorphous microstructure, the insulating properties of the glass coating layer, and remarkable fiber anisotropy, demonstrating multiple electromagnetic wave dissipation mechanisms that reveal broad application prospects in microwave-absorbing materials. Experimental results indicate that chopped GMAFs not only exhibit outstanding electromagnetic absorption performance, but their random distribution characteristics also impart macroscopic isotropy to the material, highlighting significant potential for engineering applications. By precisely tuning the fiber diameter and composition, the resonance peak and absorption frequency band can be effectively adjusted. Both the glass coating and the soft magnetic amorphous alloy properties contribute to optimizing impedance matching and absorption efficiency. Further investigation into the electromagnetic response characteristics of GMAFs confirms their multi-mechanism attenuation capability, establishing them as high-performance microwave absorbers suitable for absorbing structures. These findings provide a crucial research foundation for tailoring the electromagnetic properties of GMAF-based composite absorbing fabrics.

Conclusion The research indicates that orderly arranged C-GMAFs possess directional reflection characteristics and are suitable for electromagnetic shielding materials, while randomly distributed GMAFs exhibit macroscopic isotropic absorption behavior. By adjusting parameters such as fiber fineness and composition, the resonant peak and absorption frequency band can be precisely regulated, achieving tunable functionality of the material. The unique core-sheath structure of GMAFs effectively blocks electrical connections between fibers, optimizes impedance matching, and enhances loss efficiency. After annealing and crystallization of the amorphous structure, the absorption performance of GMAFs significantly declines, confirming the crucial role of the disordered atomic arrangement in amorphous state in dielectric/magnetic loss. At the same addition amount, the absorption efficiency of GMAFs surpasses that of the conventional stainless steel fibers and FeNi fibers, highlighting its lightweight advantage. With its tunable electromagnetic response characteristics and high compatibility with textile fibers, GMAFs offer the possibility of breaking through the performance limits of the conventional materials for next-generation smart textiles and electromagnetic protective textiles, and are expected to achieve engineering applications in military stealth, 5G/6G communication protection, medical electromagnetic safety, and other fields.

Key words: wave-absorbing material, glass-coated magnetic amorphous alloy fiber, absorber, electromagnetic wave absorption, electromagnetic response property, tunable function, core-sheath structure

中图分类号: 

  • TS101.3

表1

GMAFs规格参数"

编号 成分组成 纤维直径/μm 内芯直径/μm 线密度/tex
Co72Fe5Si8B15 24.4 12.4 1.7
Co72Fe5Si8B15 18.9 11.3 1.2
Co72Fe5Si8B15 25.4 16.8 2.4
Fe53Co24Si8B15 24.4 12.4 1.7

表2

各纤维直径及其电导率"

纤维种类 纤维直径/μm 电导率/(106 S·m-1)
GMAFs 24.4 0.17
SSFs-1 12 1.47
SSFs-2 24.4 1.01
FeNi 30 1.35
FeNiCo 50 1.17
SCFs 7 0.05

表3

退火参数"

样品编号 退火温度/℃ 升温速率/(℃·h-1)
AN-GMAFs-L/F 300 300
AN-GMAFs-L/S 300 100
AN-GMAFs-H/F 500 300
AN-GMAFs-H/S 500 100

图1

C-GMAFs长丝有序排列样品制备流程图和实物图"

图2

GMAFs周期排列样品示意图和实物图"

图3

短切纤维无序排列样品示意图"

图4

C-GMAFs的形貌(×400)"

图5

C-GMAFs退火前后的XRD图"

图6

GMAFs与NG-GMAFs的磁滞回线"

图7

C-GMAFs不同方向排列的电磁性能测试曲线"

图8

GMAFs有序排列和随机分布样品的反射率曲线"

图9

不同线密度GMAFs的8-2样品的反射率曲线"

图10

不同长度的Co基和Fe基GMAFs的反射率曲线"

图11

5 mm长度的GMAFs去除玻璃片前后不同面密度的反射率"

表4

不同GMAFs内的纤维理论根数"

NG-5-1 NG-5-3 NG-5-5 5-1 5-3 5-5
8 050 24 150 40 248 3 802 11 408 19 014

图12

不同退火参数GMAFs的测试曲线"

图13

不同种类纤维5-3样品的反射率曲线"

[1] FAN W, QU H J, ZHAO Q L, et al. Cobalt phosphide decorated on reduced graphene oxide with enhanced microwave absorption performance[J]. Journal of Alloys and Compounds, 2022, 925: 166636.
doi: 10.1016/j.jallcom.2022.166636
[2] JIA Z R, SUN L F, GAO Z G, et al. Modulating magnetic interface layer on porous carbon heterostructures for efficient microwave absorption[J]. Nano Research, 2024, 17(11): 10099-10108.
doi: 10.1007/s12274-024-6939-0
[3] LAN D, HU Y, WANG M, et al. Perspective of electromagnetic wave absorbing materials with continuously tunable effective absorption frequency bands[J]. Composites Communications, 2024, 50: 101993.
doi: 10.1016/j.coco.2024.101993
[4] KIM M S, MIN E H, KOH J G. Comparison of the effects of particle shape on thin FeSiCr electromagnetic wave absorber[J]. Journal of Magnetism and Magnetic Materials, 2009, 321(6): 581-585.
doi: 10.1016/j.jmmm.2008.09.033
[5] WANG C J, WANG Y X, JIANG H T, et al. Three-dimensional bamboo-like amorphous N/S Co-doped carbon nanotubes encapsulated with Cu nanoparticles/carbon fiber heterostructures for boosting electromagnetic wave absorbing properties[J]. Ceramics International, 2023, 49(2): 2792-2805.
doi: 10.1016/j.ceramint.2022.09.261
[6] SUN J H, HUANG X X, LIU Y H, et al. Enhanced microwave absorption performance originated from interface and unrivaled impedance matching of SiO2/carbon fiber[J]. Applied Surface Science, 2023, 623: 157029.
doi: 10.1016/j.apsusc.2023.157029
[7] ZHAO X X, HUANG Y, JIANG H Y, et al. Carbon fibers coated with floral MoSe2 are applied to high-performance electromagnetic absorbing materials[J]. Journal of Alloys and Compounds, 2024, 986: 174067.
doi: 10.1016/j.jallcom.2024.174067
[8] ENTEZARI H, ALMASI KASHI M, ALIKHANZADEH-ARANI S, et al. In situ precipitation synthesis of FeNi/ZnO nanocomposites with high microwave absorption properties[J]. Materials Chemistry and Physics, 2021, 266: 124508.
doi: 10.1016/j.matchemphys.2021.124508
[9] FAN B B, LI N, DAI B Z, et al. Investigation of adjacent spacing dependent microwave absorption properties of lamellar structural Ti3C2Tx MXenes[J]. Advanced Powder Technology, 2020, 31(2): 808-815.
doi: 10.1016/j.apt.2019.11.035
[10] 尚楷, 武志红, 张路平, 等. 纤维吸波材料研究进展[J]. 化工新型材料, 2019, 47(9): 24-27.
SHANG Kai, WU Zhihong, ZHANG Luping, et al. Research progress of fiber absorbing material[J]. New Chemical Materials, 2019, 47(9): 24-27.
[11] ZHANG B S, FENG Y, XIONG J, et al. Microwave-absorbing properties of de-aggregated flake-shaped carbonyl-iron particle composites at 2-18 GHz[J]. IEEE Transactions on Magnetics, 2006, 42(7): 1778-1781.
doi: 10.1109/TMAG.2006.874188
[12] 吴挺华. 玻璃包覆非晶磁性微丝的制备与电磁特性研究[D]. 武汉: 华中科技大学, 2006:1-50.
WU Tinghua. Synthesis and electromagnetic properties of amouphous glass-covered metallic microwires[D]. Wuhan: Huazhong University of Science and Technology, 2006:1-50.
[13] 苏飞, 王晓艳, 姬金祖. 非晶铁磁纤维复合材料吸波性能的应力可调性实验研究[J]. 实验力学, 2012, 27(1): 108-113.
SU Fei, WANG Xiaoyan, JI Jinzu. Experimental investigations on stress adjustability of wave absorbing properties for amorphous ferromagnetic fiber filled composites[J]. Journal of Experimental Mechanics, 2012, 27(1): 108-113.
[14] DI Y J, JIANG J J, BIE S W, et al. Collective length effect on the magnetostatic properties of arrays of glass-coated amorphous alloy microwires[J]. Journal of Magnetism and Magnetic Materials, 2008, 320(3/4): 534-539.
doi: 10.1016/j.jmmm.2007.07.015
[15] 邸永江, 江建军, 吴挺华, 等. 玻璃包覆磁性微丝的制备及微波电磁性能[J]. 功能材料, 2007, 38(2): 173-175.
DI Yongjiang, JIANG Jianjun, WU Tinghua, et al. Synthesis and microwave electromagnetic properties of glass-coated magnetic microwires[J]. Journal of Functional Materials, 2007, 38(2): 173-175.
[16] RAU M, IFTEMIE A, BALTAG O, et al. The study of the electromagnetic shielding properties of a textile material with amorphous microwire[J]. Advances in Electrical and Computer Engineering, 2011, 11(1): 17-22.
[17] BOEHHOE O. Art of radar deception-cloaks of invisi-bility for military equipment[EB/OL].(2020-5-25). https://glavportal.com.
[18] SHI Y Y, YU L J, LI K, et al. Well-matched impedance of polypyrrole-loaded cotton non-woven fabric/polydimethylsiloxane composite for extraordinary microwave absorption[J]. Composites Science and Technology, 2020, 197: 108246.
doi: 10.1016/j.compscitech.2020.108246
[19] JI H, XIAO H, RUAN X Y, et al. An ultrathin ultralight electromagnetic absorber based on shortcut glass-coated amorphous magnetic fiber/salisbury-like screen[J]. Composite Structures, 2025, 353: 118667.
doi: 10.1016/j.compstruct.2024.118667
[20] WANG X D, LIU J S, QIN F X, et al. Microwave absorption properties of FeSiBNbCu glass-covered amorphous wires[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(8): 2574-2580.
doi: 10.1016/S1003-6326(14)63385-9
[21] GUEYE P G B, SÁNCHEZ J L, NAVARRO E, et al. Control of the length of Fe73.5Si13.5Nb3Cu1B9 microwires to be used for magnetic and microwave absorbing purposes[J]. ACS Applied Materials & Interfaces, 2020, 12(13): 15644-15656.
[22] LIANG H S, LIU J L, ZHANG Y, et al. Ultra-thin broccoli-like SCFs@TiO2 one-dimensional electro-magnetic wave absorbing material[J]. Composites Part B: Engineering, 2019, 178: 107507.
doi: 10.1016/j.compositesb.2019.107507
[23] 邹佩倚, 张森, 杨润芝, 等. 硼掺杂对螺旋碳纳米管微波吸收性能的影响研究[J]. 现代物理, 2021, 11(3): 52-58.
ZOU Peiyi, ZHANG Sen, YANG Runzhi, et al. Effect of boron doping on microwave absorption properties of helical carbon nanotubes[J]. Modern Physics, 2021, 11(3): 52-58.
doi: 10.12677/MP.2021.113007
[24] LIU Y J, SUN X, SONG Z M, et al. Parallel-orientation-induced strong resonances enable Ni submicron-wire array: an ultrathin and ultralight electromagnetic wave absorbing material[J]. Advanced Electronic Materials, 2021, 7(3): 2000970.
doi: 10.1002/aelm.v7.3
[25] 冯帅博, 强荣, 邵玉龙, 等. 丝瓜络衍生碳纤维基复合材料的电磁波吸收性能[J]. 纺织学报, 2023, 44(2): 69-75.
FENG Shuaibo, QIANG Rong, SHAO Yulong, et al. Microwave absorption performance of loofah sponge derived carbon fiber composites[J]. Journal of Textile Research, 2023, 44(2): 69-75.
[1] 于梦菲, 高文丽, 任婧, 曹雷涛, 彭若铉, 凌盛杰. 摩擦纳米发电机用皮芯结构纤维的制备及其性能[J]. 纺织学报, 2025, 46(05): 1-9.
[2] 李一, 张恒宇, 郭雯卓, 陈剑英, 王妮, 肖红. 阻抗阶跃渐变层结构纤维素/Ti3C2Tx气凝胶材料的制备及其吸波性能[J]. 纺织学报, 2025, 46(03): 17-26.
[3] 房磊, 刘秀明, 贾娇娇, 蔺志浩, 任燕飞, 侯凯文, 巩继贤, 扈延龄. 高分子量壳聚糖皮芯结构微纳米纤维膜制备[J]. 纺织学报, 2024, 45(09): 1-9.
[4] 冯帅博, 强荣, 邵玉龙, 杨啸, 马茜, 陈博文, 陈熠, 高明洋, 陈彩虹. 丝瓜络衍生碳纤维基复合材料的电磁波吸收性能[J]. 纺织学报, 2023, 44(02): 69-75.
[5] 郭明瑞, 顾银华, 高卫东. 棉/涤皮芯结构粗纱参数对其细纱结构与性能的影响[J]. 纺织学报, 2022, 43(06): 57-62.
[6] 叶伟, 余进, 龙啸云, 孙启龙, 马岩. 丝瓜络基碳材料的电磁波吸收性能[J]. 纺织学报, 2022, 43(04): 33-39.
[7] 强荣, 冯帅博, 马茜, 陈博文, 陈熠. 钴/碳纤维复合材料的制备及其吸波性能[J]. 纺织学报, 2022, 43(02): 30-36.
[8] 赵金洋, 孙窈, 张鑫, 张悦悦, 赵浩阅, 夏鑫. 锡/碳纳米纤维锂电负极材料形貌结构再造及其机制[J]. 纺织学报, 2019, 40(08): 7-13.
[9] 姜岩;王业宏;姜丽;张大庆;王善元. 长丝变形纱的皮芯结构及其参数[J]. 纺织学报, 2009, 30(08): 30-33.
[10] 张建春;施楣梧;朱华;来侃. Lyocell纤维皮芯结构的研究[J]. 纺织学报, 2000, 21(01): 7-10.
[11] 王华平;余晓蔚;韩淑丽. 熔纺中空纤维皮芯结构的动力学模拟──冷却条件对皮芯差异的影响[J]. 纺织学报, 1999, 20(03): 15-18.
[12] 王华平;余晓蔚;韩淑丽. 熔纺中空纤维皮芯结构的动力学模拟──泵供量、卷绕速度、熔体温度、切片粘度的影响[J]. 纺织学报, 1999, 20(02): 7-10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!