纺织学报 ›› 2025, Vol. 46 ›› Issue (09): 213-224.doi: 10.13475/j.fzxb.20250306501
刘贝芬1, 张坦坦2, 冯峥嵘2
LIU Beifen1, ZHANG Tantan2, FENG Zhengrong2
摘要: 针对清代官补在风格迁移中色彩保留不足及多层次纹样结构细节易丢失的问题,提出一种基于改进循环生成对抗网络的风格迁移方法,从纹样、色彩、构图3个方面分析了清代官补的艺术特征,与其它主流风格迁移模型对比,以艺术指标和技术指标进行评价,选择表现最佳的循环生成对抗网络模型进行改进,在生成器中引入特征融合模块,简化判别器结构,引入感知损失函数。结果表明,改进方法在技术指标上有显著提升,其中结构相似度提高了0.041,峰值信噪比提高了2.17 dB,均方误差降低了0.031,图像感知相似度降低了0.042,序列感知距离降低了4.157,可生成更清晰的祥云纹、海水江崖纹等基本纹样,实现底色与纹样的有效分离,增强了图案的层次感与边缘清晰度,研究成果为传统服饰纹样的数字化创新提供了技术路径参考,也为当代图案的艺术创作开辟了新的发展空间。
中图分类号:
| [1] | 赵琳琳, 孙梦梦. 新文创背景下中华优秀传统文化传承路径探究[J]. 文化学刊, 2025(1): 168-171. |
| ZHAO Linlin, SUN Mengmeng. Research on the inheritance path of excellent traditional Chinese culture in the context of new cultural creativity[J]. Journal of Culture, 2025(1): 168-171. | |
| [2] | 颜丙义, 侯金, 黄启煜, 等. 典型传统服饰图像的在线识别系统[J]. 纺织学报, 2023, 44(5): 184-190. |
| YAN Bingyi, HOU Jin, HUANG Qiyu, et al. Online recognition system for typical traditional clothing images[J]. Journal of Textile Research, 2023, 44(5): 184-190. | |
| [3] | 毛敬, 杜程, 李淑嵘. 语义学视阈下清代文官清代官补艺术语言及意涵[J]. 印染, 2024, 50(3): 106-108. |
| MAO Jing, DU Cheng, LI Shurong. Artistic language and meaning of Qing dynasty civil official badges from the perspective of semantics[J]. China Dyeing and Finishing, 2024, 50(3): 106-108. | |
| [4] | 李楠, 张毅. 清代官补纹样艺术特征及其创新设计应用[J]. 服装学报, 2020, 5(1): 47-53. |
| LI Nan, ZHANG Yi. Characteristics of the art of official repair patterns in the Qing dynasty and their innovative design applications[J]. Journal of Apparel Studies, 2020, 5(1): 47-53. | |
| [5] | 胡琦瑶, 刘乾龙, 彭先霖, 等. SN-CLPGAN:基于谱归一化的中国传统山水画风格迁移方法[J]. 西北大学学报(自然科学版), 2025, 55(1): 63-74. |
| HU Qiyao, LIU Qianlong, PENG Xianlin, et al. SN-CLPGAN: style migration method of traditional Chinese landscape painting based on spectrum normalization[J]. Journal of Northwest University(Natural Science Edition), 2025, 55(1): 63-74. | |
| [6] |
张泽宇, 王铁君, 郭晓然, 等. AI绘画研究综述[J]. 计算机科学与探索, 2024, 18(6): 1404-1420.
doi: 10.3778/j.issn.1673-9418.2401075 |
| ZHANG Zeyu, WANG Tiejun, GUO Xiaoran, et al. AI painting research review[J]. Computer Science and Exploration, 2024, 18(6): 1404-1420. | |
| [7] |
赖丽娜, 米瑜, 周龙龙, 等. 生成对抗网络与文本图像生成方法综述[J]. 计算机工程与应用, 2023, 59(19): 21-39.
doi: 10.3778/j.issn.1002-8331.2211-0392 |
|
LAI Lina, MI Yu, ZHOU Longlong, et al. Survey about generative adversarial network and text-to-image synthesis[J]. Computer Engineering and Applications, 2023, 59(19): 21-39.
doi: 10.3778/j.issn.1002-8331.2211-0392 |
|
| [8] | REED S, AKATA Z, YAN X, et al. Generative adversarial text to image synthesis[C]// Proceedings of the 33rd International Conference on International Conference on Machine Learning-Volume 48 (ICML'16). New York: JMLR, 2016: 1060-1069. |
| [9] |
RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088): 533-536.
doi: 10.1038/323533a0 |
| [10] |
BOURLARD H, KAMP Y. Auto-association by multilayer perceptrons and singular value decom-position[J]. Biological Cybernetics, 1988, 59(4/5): 291-294.
doi: 10.1007/BF00332918 |
| [11] | 陈淑环, 韦玉科, 徐乐, 等. 基于深度学习的图像风格迁移研究综述[J]. 计算机应用研究, 2019, 36(8): 2250-2255. |
| CHEN Shuhuan, WEI Yuke, XU Le, et al. Survey of image style transfer based on deep learning[J]. Application Research of Computers, 2019, 36(8): 2250-2255. | |
| [12] |
陈淮源, 张广池, 陈高, 等. 基于深度学习的图像风格迁移研究进展[J]. 计算机工程与应用, 2021, 57(11): 37-45.
doi: 10.3778/j.issn.1002-8331.2101-0019 |
|
CHEN Huaiyuan, ZHANG Guangchi, CHEN Gao, et al. Research progress of image style transfer based on deep learning[J]. Computer Engineering and Applications, 2021, 57(11): 37-45.
doi: 10.3778/j.issn.1002-8331.2101-0019 |
|
| [13] | 姚琳涵, 张颖, 姚岚, 等. 基于多尺度纹理合成的刺绣风格迁移模型[J]. 纺织学报, 2023, 44(9): 84-90. |
| YAO Linhan, ZHANG Ying, YAO Lan, et al. Embroidery style transfer model based on multi-scale texture synthesis[J]. Journal of Textile Research, 2023, 44(9): 84-90. | |
| [14] | 陈鋆纯, 季铁, 彭坚, 等. 基于风格特征的花瑶挑花图案智能设计路径[J]. 丝绸, 2023, 60(9): 112-119. |
| CHEN Junchun, JI Tie, PENG Jian, et al. Based on the style characteristics, the intelligent design path of the flower picking pattern[J]. Journal of Silk, 2023, 60(9): 112-119. | |
| [15] | 沙莎, 李怡, 蒋惠敏, 等. 基于ChipGAN-ViT模型的汉绣艺术风格迁移与模拟[J]. 纺织工程学报, 2023, 1(5): 68-77. |
| SHA Sha, LI Yi, JIANG Huimin, et al. Migration and simulation of Han embroidery art style based on ChipGAN-ViT model[J]. Journal of Textile Engineering, 2023, 1(5): 68-77. | |
| [16] | 李敏, 刘冰清, 彭庆龙, 等. 基于Cycle GAN算法的迷彩服装图案设计方法研究[J]. 丝绸, 2022, 59(8): 100-106. |
| LI Min, LIU Bingqing, PENG Qinglong, et al. Research on camouflage clothing pattern design method based on Cycle GAN algorithm[J]. Journal of Silk, 2022, 59(8): 100-106. | |
| [17] | 王伟珍, 张功. 基于Cycle GAN的服装图像混搭风格迁移[J]. 现代纺织技术, 2023, 31(4): 250-258. |
| WANG Weizhen, ZHANG Gong. Mix and match style transfer for the images of clothes with Cycle GAN[J]. Modern Textile Technology, 2023, 31(4): 250-258. | |
| [18] | 王清和, 曹兵, 朱鹏飞, 等. 基于自判别循环生成对抗网络的人脸图像翻译[J]. 中国科学:信息科学, 2022, 52:1447-1462. |
| WANG Q H, CAO B, ZHU P F, et al. Self-discriminative cycle generative adversarial networks for face image translation[J]. Science in China: Information Science, 2022, 52: 1447-1462. | |
| [19] | CHEN R, HUANG W, HUANG B, et al. Reusing discriminators for encoding:towards unsupervised image-to-image translation[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recog-nition (CVPR). Seattle: IEEE, 2020: 8165-8174. |
| [20] | YI Z, ZHANG H, TAN P, et al. Dual GAN:Unsupervised dual learning for image-to-image translation[C]// 2017 IEEE International Conference on Computer Vision (ICCV). Venice: IEEE, 2017: 2868-2876. |
| [21] | KIM T, CHA M, KIM H, et al. Learning to discover cross-domain relations with generative adversarial networks[C]// Proceedings of the 34th International Conference on Machine Learning. PMLR, 2017 Sydney NSW Australia: 1857-1865. |
| [22] | ZHU JY, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]// 2017 IEEE International Conference on Computer Vision (ICCV). Venice: IEEE, 2017: 2242-2251. |
| [23] | 王渊. 服装纹样中的等级制度:中国明清补服的形与制[M]. 北京: 中国纺织出版社, 2016:86-151. |
| WANG Yuan. Hierarchical system in clothing patterns: form and system of Ming and Qing dynasty mandarin square[M]. Beijing: China Textile Press, 2016:86-151. | |
| [24] | 臧诺. 清代官补[M]. 北京: 华夏出版社, 2016: 23-272. |
| ZANG Nuo. Qing dynasty official badges[M]. Beijing: Huaxia Publishing House, 2016: 23-272. | |
| [25] | 大卫·哈古斯. 补子: 明清时期的品级标识[M]. 王敬雅, 伍泰格,译. 北京: 社会科学文献出版社, 2023: 37-95. |
| HAGUS D. Buzi: rank badges of the Ming and Qing dynasties[M]. WANG Jingya, WU Taige, translating. Beijing: Social Sciences Academic Press, 2023: 37-95. | |
| [26] | 李莉, 毛子晗, 吕思奇, 等. GAN与Diffusion在传统纹样设计中的实验研究[J]. 丝绸, 2024, 61(8): 9-22. |
| LI Li, MAO Zihan, LÜ Siqi. An experimental study on the application of GAN and Diffusion models in traditional pattern designn[J]. Journal of Silk, 2024, 61(8): 9-22. |
| [1] | 王建辉, 张华熊, 金耀, 刘志. 基于流行色的织物花型图案色彩迁移方法[J]. 纺织学报, 2025, 46(07): 144-153. |
| [2] | 蔡丽玲, 王梅, 邵一兵, 陈炜, 曹华卿, 季晓芬. 基于改进堆叠生成对抗网络的传统汉服智能定制推荐[J]. 纺织学报, 2024, 45(12): 180-188. |
| [3] | 陆寅雯, 侯珏, 杨阳, 顾冰菲, 张宏伟, 刘正. 基于姿态嵌入机制和多尺度注意力的单张着装图像视频合成[J]. 纺织学报, 2024, 45(07): 165-172. |
| [4] | 姚琳涵, 张颖, 姚岚, 郑晓萍, 魏文达, 刘成霞. 基于多尺度纹理合成的刺绣风格迁移模型[J]. 纺织学报, 2023, 44(09): 84-90. |
| [5] | 陈金文, 王鑫, 罗炜豪, 梅琛楠, 韦京艳, 钟跃崎. 面向虚拟现实的着装人体个性化头面部纹理生成技术[J]. 纺织学报, 2023, 44(09): 188-196. |
| [6] | 张静, 丛洪莲, 蒋高明. 纬编双面移圈产品工艺设计模型建立与实现[J]. 纺织学报, 2023, 44(06): 98-104. |
| [7] | 刘玉叶, 王萍. 基于纹理特征学习的高精度虚拟试穿智能算法[J]. 纺织学报, 2023, 44(05): 177-183. |
| [8] | 贾静, 曹竟文, 徐平华, 林瑞冰, 孙晓婉. 基于京剧脸谱意象色彩的服饰纹样自动配色[J]. 纺织学报, 2022, 43(12): 160-166. |
| [9] | 王玉娟, 汪军. 原配色丝颜色预测模型[J]. 纺织学报, 2021, 42(02): 156-160. |
| [10] | 汤梦婷 蒋高明 王薇 高梓越. 基于互联网的经编针织物CAD系统开发与实现[J]. 纺织学报, 2018, 39(10): 143-148. |
| [11] | 谢远鹏 蒋高明 张爱军 张燕婷 陈方芳. 双色效应压纱贾卡提花织物的计算机辅助设计[J]. 纺织学报, 2017, 38(12): 157-161. |
| [12] | 王薇 蒋高明 丛洪莲 高梓越 汤梦婷 于璐璐. 基于互联网的纬编针织物计算机辅助设计系统[J]. 纺织学报, 2017, 38(08): 150-155. |
| [13] | 徐强 陈东生 甘应进. 台湾排湾族服饰纹样的文化内涵解读[J]. 纺织学报, 2016, 37(12): 111-116. |
| [14] | 钟君 丛洪莲 张燕婷 张爱军. 经编双贾卡提花鞋面织物的计算机辅助设计[J]. 纺织学报, 2016, 37(11): 148-153. |
| [15] | 李红梅 蒋高明 李欣欣. 带鸟巢效应压纱贾卡提花织物的计算机辅助设计[J]. 纺织学报, 2015, 36(12): 140-145. |
|
||