纺织学报 ›› 2025, Vol. 46 ›› Issue (09): 213-224.doi: 10.13475/j.fzxb.20250306501

• 服装工程 • 上一篇    下一篇

基于改进Cycle GAN的清代官补风格迁移研究

刘贝芬1, 张坦坦2, 冯峥嵘2   

  1. 1.安徽工程大学 纺织服装学院, 安徽 芜湖 241000
    2.安徽工程大学 高端装备先进感知与智能控制教育部重点实验室, 安徽 芜湖 241000
  • 收稿日期:2025-03-31 修回日期:2025-06-04 出版日期:2025-09-15 发布日期:2025-11-12
  • 作者简介:刘贝芬(1987—),女,讲师,硕士。主要研究方向为服装数字化。
  • 基金资助:
    国家自然科学基金项目(61903002);安徽省高校哲学社会科学研究重点项目(2023AH050881);安徽省重点研究与开发计划项目(202304a05020073)

Research on style design of Qing dynasty mandarin square based on Cycle GAN

LIU Beifen1, ZHANG Tantan2, FENG Zhengrong2   

  1. 1. School of Textile and Clothing, Anhui Polytechnic University, Wuhu, Anhui 241000, China
    2. Key Laboratory of Advanced Perception and Intelligent Control of High-end Equipment, Ministry of Education, Anhui Polytechnic University, Wuhu, Anhui 241000, China
  • Received:2025-03-31 Revised:2025-06-04 Published:2025-09-15 Online:2025-11-12

摘要: 针对清代官补在风格迁移中色彩保留不足及多层次纹样结构细节易丢失的问题,提出一种基于改进循环生成对抗网络的风格迁移方法,从纹样、色彩、构图3个方面分析了清代官补的艺术特征,与其它主流风格迁移模型对比,以艺术指标和技术指标进行评价,选择表现最佳的循环生成对抗网络模型进行改进,在生成器中引入特征融合模块,简化判别器结构,引入感知损失函数。结果表明,改进方法在技术指标上有显著提升,其中结构相似度提高了0.041,峰值信噪比提高了2.17 dB,均方误差降低了0.031,图像感知相似度降低了0.042,序列感知距离降低了4.157,可生成更清晰的祥云纹、海水江崖纹等基本纹样,实现底色与纹样的有效分离,增强了图案的层次感与边缘清晰度,研究成果为传统服饰纹样的数字化创新提供了技术路径参考,也为当代图案的艺术创作开辟了新的发展空间。

关键词: 风格迁移, 服饰纹样, 辅助设计, 生成对抗网络, 清代官补, 艺术评价

Abstract:

Objective An improved cycle generative adversarial network (Cycle GAN) style transfer method is proposed to address insufficient color preservation and loss of multi-layered pattern details when transferring Qing dynasty mandarin square badge styles, aiming to preserve these imperial rank insignia's cultural heritage while effectively reproducing their complex pattern systems through deep learning techniques.

Method The Qing dynasty mandarin square patterns were analyzed through pattern elements, color schemes, and compositional structure. Five style transfer models, i.e., self-discriminative cycle generative adversarial networks (SD GAN), no-independent-component-for-encoding GAN (Nice GAN), dual generative adversarial network (Dual GAN), generative adversarial networks that learns to discover relations between different domains (Disco GAN), and cycle generative adversarial network (Cycle GAN), were compared. Based on the recognition of Cycle GAN as the optimal foundation, three modifications were implemented, including adding feature fusion modules to the generator to enhance pattern detail capture, and simplifying the discriminator structure to preserve compositional features, and introducing perceptual loss functions to prevent pattern-background color merging.

Results The modified model demonstrated significant technical enhancements. The structural similarity index measure (SSIM) increased by 0.041, peak signal-to-noise ratio (PSNR) improved by 2.17 dB, mean squared error (MSE) decreased by 0.031, learned perceptual image patch similarity (LPIPS) reduced by 0.042, and the frÉchet inception distance (FID) index dropped by 4.157.

The modified model also generated clearer traditional motifs, particularly auspicious cloud patterns and sea-mountain designs. It effectively separated background colors from foreground patterns, enhancing layering effects and edge definition crucial to these historical insignia. The feature fusion mechanism in the generator captured multi-scale pattern features more effectively, preserving intricate details of emblematic elements while maintaining proportional relationships. This improvement appeared most notably in the preservation of fine line work and distinctive gradations in cloud and water motifs. The simplified discriminator better preserved pattern distribution logic and spatial relationships between decorative elements, maintaining the symbolic hierarchy inherent in these rank-signifying textiles. This improvement particularly affected the compositional integrity of central animal motifs (such as cranes or lions) that designated specific ranks. The perceptual loss functions addressed color bleeding between foreground and background elements, resulting in more precise color boundaries while maintaining harmonious transitions characteristic of traditional silk embroidery. The improved color fidelity preserved symbolic color associations while allowing adaptability to contemporary palettes.

Visual assessment confirmed the improved model reproduced the distinctive qualities of Qing dynasty mandarin squares more accurately, including balanced composition, symbolic coherence, and intricate detailing.

Conclusion This study systematically analyzed style transfer models for Qing dynasty mandarin square patterns, revealing their unique artistic characteristics through content form, color composition, and layout arrangement. Through comprehensive evaluation of five mainstream image generation style transfer models using artistic and technical metrics, Cycle GAN was identified as the optimal choice. Effective improvements were developed addressing insufficient layering, pattern overlapping, and excessive color blending in generated images. The improved model achieved breakthroughs in three key areas, namely (i) the feature fusion module enhanced multi-scale pattern feature capture, particularly improving preservation of cloud motifs and sea-mountain designs, (ii) the optimized discriminator with 1×1 convolution kernels and reduced network layers prevented information loss, enhanced understanding of unique compositional layouts, and resolved pattern continuity issues, and (iii) the perceptual loss functions optimized background-pattern separation, creating natural color transitions consistent with traditional principles. These improvements enabled successful transfer of artistic characteristics while preserving modern image content, integrating traditional elements with contemporary aesthetics. This research provides an innovative pathway for digital inheritance of mandarin square patterns, enabling automated creation of modern animal images in traditional styles, improving design efficiency and meeting personalization requirements. Future research will explore this method's applicability to other complex traditional patterns.

Key words: style transfer, clothing pattern, auxiliary design, generative adversarial network, Qing dynasty mandarin square, artistic evaluation

中图分类号: 

  • TS941.26

图1

清代官补纹样构成 注:主图来自于《清代官补》臧诺著第203页图鹭鸶方补道光(公元1821—1850年)"

表1

各模型清代官补风格迁移对比分析"

模型 主要特点 清代官补迁移的优点 清代官补迁移的缺点 内容形式 色彩构成 构图布局
SD GAN ·自辨别机制
·全向像素梯度卷积核
·对细节捕捉能力强
·在早期轮次中SSIM高
·动物图案象征意义易丢失
·FID指标较高,真实度不足
基本达到 未达到 基本达到
Nice GAN ·重用判别器作为编码器
·分离训练策略
·训练效率较高
·生成图像较稳定
·后续训练增益有限
·不适合复杂纹样迁移
基本达到 基本达到 基本达到
Dual GAN ·双学习框架
·双GAN负责双向转换
·能处理无配对数据
·快速进入平台期
·缺乏针对纹样的特殊机制
·在清代官补上表现糟糕
未达到 基本达到 未达到
Disco GAN ·强调域一致性损失
·注重发现跨域关系
·风格转换效果明显
·结构特征方面较好
·生成图像文化真实性不足
·清代官补风格过于单一
未达到 基本达到 未达到
Cycle GAN ·循环一致性损失
·双向转换机制
·适合无配对数据
·训练稳定性好
·细节保留不足
·文化特征可能淡化
基本达到 基本达到 达到

图2

Cycle GAN清代官补风格迁移缺陷示意图"

图3

本文模型迁移过程"

图4

生成器模型"

图5

残差块结构"

图6

判别器模型"

表2

软硬件配置参数表"

软硬件 参数配置
核处理器 18 vCPU AMD EPYC 9754
显卡 RTX 3090
内存 64GB
操作系统 ubuntu18.04
CUDA版本 Cuda11.1
深度学习框架 PyTorch1.9.0
Python版本 Python3.8
扫描仪 佳能TR7500 series

图7

5种模型生成图像的问卷用图"

表3

艺术评估内容与单项指标均值"

模型 受访者 S Co D A Cr W
SD GAN 了解补子文化 3.061 3.122 3.163 3.224 3.265 3.167
不了解补子文化 3.043 3.304 3.086 3.043 3.391 3.158
Nice GAN 了解补子文化 3.081 3.448 3.163 3.326 3.204 3.234
不了解补子文化 3.130 3.347 3.043 3.173 3.347 3.203
Dual GAN 了解补子文化 2.632 2.775 2.714 2.734 2.775 2.719
不了解补子文化 3.000 3.173 2.782 3.086 2.956 3.006
Disco GAN 了解补子文化 3.102 2.938 3.122 3.020 3.204 3.080
不了解补子文化 2.826 2.913 3.000 3.000 2.956 2.934
Cycle GAN 了解补子文化 3.979 4.183 4.061 4.163 4.040 4.080
不了解补子文化 3.608 4.000 3.695 3.652 3.565 3.682

表4

技术指标评价"

轮次 模型 SSIM↑ PSNR↑ MSE↓ LPIPS↓ FID↓
10 Sd GAN 0.087 12.166 0.056 0.662 222.438
Nice GAN 0.059 10.216 0.101 0.596 159.246
Dual GAN 0.054 11.128 0.090 0.465 82.536
Disco GAN 0.03 10.340 0.094 0.508 213.618
Cycle GAN 0.034 10.033 0.098 0.561 205.503
50 Sd GAN 0.082 11.993 0.065 0.549 135.633
Nice GAN 0.058 10.238 0.101 0.592 153.851
Dual GAN 0.056 11.224 0.088 0.463 81.9141
Disco GAN 0.032 10.693 0.095 0.549 135.633
Cycle GAN 0.039 11.068 0.094 0.489 115.690
100 Sd GAN 0.071 12.357 0.068 0.512 99.819
Nice GAN 0.059 10.286 0.099 0.595 156.279
Dual GAN 0.054 11.172 0.089 0.465 81.271
Disco GAN 0.037 10.245 0.097 0.493 185.626
Cycle GAN 0.041 11.142 0.087 0.464 83.419
150 Sd GAN 0.070 12.035 0.083 0.493 108.035
Nice GAN 0.059 10.286 0.099 0.595 156.279
Dual GAN 0.054 11.129 0.090 0.466 81.610
Disco GAN 0.037 10.383 0.095 0.493 176.100
Cycle GAN 0.040 11.718 0.087 0.459 79.901
200 Sd GAN 0.060 11.314 0.087 0.475 101.915
Nice GAN 0.058 10.339 0.099 0.584 153.182
Dual GAN 0.054 11.113 0.091 0.466 81.619
Disco GAN 0.038 10.462 0.092 0.487 148.609
Cycle GAN 0.041 11.329 0.089 0.448 77.294

图8

艺术视觉实验结果"

表5

消融实验对比指标"

轮次 模型
变体
SSIM↑ PSNR↑ MSE↓ LPIPS↓ FID↓
10 N 0.034 10.033 0.098 0.561 205.503
G 0.056 10.841 0.083 0.494 201.116
D 0.035 10.336 0.096 0.546 208.858
L 0.050 10.639 0.088 0.511 202.213
A 0.061 11.043 0.085 0.477 200.019
50 N 0.039 11.068 0.094 0.489 115.390
G 0.068 11.423 0.077 0.437 100.400
D 0.042 11.201 0.088 0.480 114.956
L 0.061 11.334 0.081 0.462 104.222
A 0.075 11.412 0.073 0.434 96.577
100 N 0.041 11.142 0.087 0.464 83.419
G 0.072 11.655 0.075 0.441 82.074
D 0.053 11.334 0.081 0.460 83.240
L 0.064 11.527 0.076 0.445 81.660
A 0.079 11.783 0.068 0.421 81.488
150 N 0.040 11.718 0.087 0.459 79.901
G 0.072 12.118 0.066 0.419 76.444
D 0.052 11.868 0.079 0.447 78.980
L 0.064 12.018 0.071 0.428 78.058
A 0.080 12.218 0.063 0.413 76.830
200 N 0.041 11.329 0.089 0.448 77.294
G 0.074 13.065 0.064 0.417 73.968
D 0.056 11.980 0.080 0.438 76.047
L 0.066 12.631 0.070 0.433 75.800
A 0.082 13.499 0.058 0.406 73.137

图9

清代官补风格迁移消融实验"

[1] 赵琳琳, 孙梦梦. 新文创背景下中华优秀传统文化传承路径探究[J]. 文化学刊, 2025(1): 168-171.
ZHAO Linlin, SUN Mengmeng. Research on the inheritance path of excellent traditional Chinese culture in the context of new cultural creativity[J]. Journal of Culture, 2025(1): 168-171.
[2] 颜丙义, 侯金, 黄启煜, 等. 典型传统服饰图像的在线识别系统[J]. 纺织学报, 2023, 44(5): 184-190.
YAN Bingyi, HOU Jin, HUANG Qiyu, et al. Online recognition system for typical traditional clothing images[J]. Journal of Textile Research, 2023, 44(5): 184-190.
[3] 毛敬, 杜程, 李淑嵘. 语义学视阈下清代文官清代官补艺术语言及意涵[J]. 印染, 2024, 50(3): 106-108.
MAO Jing, DU Cheng, LI Shurong. Artistic language and meaning of Qing dynasty civil official badges from the perspective of semantics[J]. China Dyeing and Finishing, 2024, 50(3): 106-108.
[4] 李楠, 张毅. 清代官补纹样艺术特征及其创新设计应用[J]. 服装学报, 2020, 5(1): 47-53.
LI Nan, ZHANG Yi. Characteristics of the art of official repair patterns in the Qing dynasty and their innovative design applications[J]. Journal of Apparel Studies, 2020, 5(1): 47-53.
[5] 胡琦瑶, 刘乾龙, 彭先霖, 等. SN-CLPGAN:基于谱归一化的中国传统山水画风格迁移方法[J]. 西北大学学报(自然科学版), 2025, 55(1): 63-74.
HU Qiyao, LIU Qianlong, PENG Xianlin, et al. SN-CLPGAN: style migration method of traditional Chinese landscape painting based on spectrum normalization[J]. Journal of Northwest University(Natural Science Edition), 2025, 55(1): 63-74.
[6] 张泽宇, 王铁君, 郭晓然, 等. AI绘画研究综述[J]. 计算机科学与探索, 2024, 18(6): 1404-1420.
doi: 10.3778/j.issn.1673-9418.2401075
ZHANG Zeyu, WANG Tiejun, GUO Xiaoran, et al. AI painting research review[J]. Computer Science and Exploration, 2024, 18(6): 1404-1420.
[7] 赖丽娜, 米瑜, 周龙龙, 等. 生成对抗网络与文本图像生成方法综述[J]. 计算机工程与应用, 2023, 59(19): 21-39.
doi: 10.3778/j.issn.1002-8331.2211-0392
LAI Lina, MI Yu, ZHOU Longlong, et al. Survey about generative adversarial network and text-to-image synthesis[J]. Computer Engineering and Applications, 2023, 59(19): 21-39.
doi: 10.3778/j.issn.1002-8331.2211-0392
[8] REED S, AKATA Z, YAN X, et al. Generative adversarial text to image synthesis[C]// Proceedings of the 33rd International Conference on International Conference on Machine Learning-Volume 48 (ICML'16). New York: JMLR, 2016: 1060-1069.
[9] RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088): 533-536.
doi: 10.1038/323533a0
[10] BOURLARD H, KAMP Y. Auto-association by multilayer perceptrons and singular value decom-position[J]. Biological Cybernetics, 1988, 59(4/5): 291-294.
doi: 10.1007/BF00332918
[11] 陈淑环, 韦玉科, 徐乐, 等. 基于深度学习的图像风格迁移研究综述[J]. 计算机应用研究, 2019, 36(8): 2250-2255.
CHEN Shuhuan, WEI Yuke, XU Le, et al. Survey of image style transfer based on deep learning[J]. Application Research of Computers, 2019, 36(8): 2250-2255.
[12] 陈淮源, 张广池, 陈高, 等. 基于深度学习的图像风格迁移研究进展[J]. 计算机工程与应用, 2021, 57(11): 37-45.
doi: 10.3778/j.issn.1002-8331.2101-0019
CHEN Huaiyuan, ZHANG Guangchi, CHEN Gao, et al. Research progress of image style transfer based on deep learning[J]. Computer Engineering and Applications, 2021, 57(11): 37-45.
doi: 10.3778/j.issn.1002-8331.2101-0019
[13] 姚琳涵, 张颖, 姚岚, 等. 基于多尺度纹理合成的刺绣风格迁移模型[J]. 纺织学报, 2023, 44(9): 84-90.
YAO Linhan, ZHANG Ying, YAO Lan, et al. Embroidery style transfer model based on multi-scale texture synthesis[J]. Journal of Textile Research, 2023, 44(9): 84-90.
[14] 陈鋆纯, 季铁, 彭坚, 等. 基于风格特征的花瑶挑花图案智能设计路径[J]. 丝绸, 2023, 60(9): 112-119.
CHEN Junchun, JI Tie, PENG Jian, et al. Based on the style characteristics, the intelligent design path of the flower picking pattern[J]. Journal of Silk, 2023, 60(9): 112-119.
[15] 沙莎, 李怡, 蒋惠敏, 等. 基于ChipGAN-ViT模型的汉绣艺术风格迁移与模拟[J]. 纺织工程学报, 2023, 1(5): 68-77.
SHA Sha, LI Yi, JIANG Huimin, et al. Migration and simulation of Han embroidery art style based on ChipGAN-ViT model[J]. Journal of Textile Engineering, 2023, 1(5): 68-77.
[16] 李敏, 刘冰清, 彭庆龙, 等. 基于Cycle GAN算法的迷彩服装图案设计方法研究[J]. 丝绸, 2022, 59(8): 100-106.
LI Min, LIU Bingqing, PENG Qinglong, et al. Research on camouflage clothing pattern design method based on Cycle GAN algorithm[J]. Journal of Silk, 2022, 59(8): 100-106.
[17] 王伟珍, 张功. 基于Cycle GAN的服装图像混搭风格迁移[J]. 现代纺织技术, 2023, 31(4): 250-258.
WANG Weizhen, ZHANG Gong. Mix and match style transfer for the images of clothes with Cycle GAN[J]. Modern Textile Technology, 2023, 31(4): 250-258.
[18] 王清和, 曹兵, 朱鹏飞, 等. 基于自判别循环生成对抗网络的人脸图像翻译[J]. 中国科学:信息科学, 2022, 52:1447-1462.
WANG Q H, CAO B, ZHU P F, et al. Self-discriminative cycle generative adversarial networks for face image translation[J]. Science in China: Information Science, 2022, 52: 1447-1462.
[19] CHEN R, HUANG W, HUANG B, et al. Reusing discriminators for encoding:towards unsupervised image-to-image translation[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recog-nition (CVPR). Seattle: IEEE, 2020: 8165-8174.
[20] YI Z, ZHANG H, TAN P, et al. Dual GAN:Unsupervised dual learning for image-to-image translation[C]// 2017 IEEE International Conference on Computer Vision (ICCV). Venice: IEEE, 2017: 2868-2876.
[21] KIM T, CHA M, KIM H, et al. Learning to discover cross-domain relations with generative adversarial networks[C]// Proceedings of the 34th International Conference on Machine Learning. PMLR, 2017 Sydney NSW Australia: 1857-1865.
[22] ZHU JY, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]// 2017 IEEE International Conference on Computer Vision (ICCV). Venice: IEEE, 2017: 2242-2251.
[23] 王渊. 服装纹样中的等级制度:中国明清补服的形与制[M]. 北京: 中国纺织出版社, 2016:86-151.
WANG Yuan. Hierarchical system in clothing patterns: form and system of Ming and Qing dynasty mandarin square[M]. Beijing: China Textile Press, 2016:86-151.
[24] 臧诺. 清代官补[M]. 北京: 华夏出版社, 2016: 23-272.
ZANG Nuo. Qing dynasty official badges[M]. Beijing: Huaxia Publishing House, 2016: 23-272.
[25] 大卫·哈古斯. 补子: 明清时期的品级标识[M]. 王敬雅, 伍泰格,译. 北京: 社会科学文献出版社, 2023: 37-95.
HAGUS D. Buzi: rank badges of the Ming and Qing dynasties[M]. WANG Jingya, WU Taige, translating. Beijing: Social Sciences Academic Press, 2023: 37-95.
[26] 李莉, 毛子晗, 吕思奇, 等. GAN与Diffusion在传统纹样设计中的实验研究[J]. 丝绸, 2024, 61(8): 9-22.
LI Li, MAO Zihan, LÜ Siqi. An experimental study on the application of GAN and Diffusion models in traditional pattern designn[J]. Journal of Silk, 2024, 61(8): 9-22.
[1] 王建辉, 张华熊, 金耀, 刘志. 基于流行色的织物花型图案色彩迁移方法[J]. 纺织学报, 2025, 46(07): 144-153.
[2] 蔡丽玲, 王梅, 邵一兵, 陈炜, 曹华卿, 季晓芬. 基于改进堆叠生成对抗网络的传统汉服智能定制推荐[J]. 纺织学报, 2024, 45(12): 180-188.
[3] 陆寅雯, 侯珏, 杨阳, 顾冰菲, 张宏伟, 刘正. 基于姿态嵌入机制和多尺度注意力的单张着装图像视频合成[J]. 纺织学报, 2024, 45(07): 165-172.
[4] 姚琳涵, 张颖, 姚岚, 郑晓萍, 魏文达, 刘成霞. 基于多尺度纹理合成的刺绣风格迁移模型[J]. 纺织学报, 2023, 44(09): 84-90.
[5] 陈金文, 王鑫, 罗炜豪, 梅琛楠, 韦京艳, 钟跃崎. 面向虚拟现实的着装人体个性化头面部纹理生成技术[J]. 纺织学报, 2023, 44(09): 188-196.
[6] 张静, 丛洪莲, 蒋高明. 纬编双面移圈产品工艺设计模型建立与实现[J]. 纺织学报, 2023, 44(06): 98-104.
[7] 刘玉叶, 王萍. 基于纹理特征学习的高精度虚拟试穿智能算法[J]. 纺织学报, 2023, 44(05): 177-183.
[8] 贾静, 曹竟文, 徐平华, 林瑞冰, 孙晓婉. 基于京剧脸谱意象色彩的服饰纹样自动配色[J]. 纺织学报, 2022, 43(12): 160-166.
[9] 王玉娟, 汪军. 原配色丝颜色预测模型[J]. 纺织学报, 2021, 42(02): 156-160.
[10] 汤梦婷 蒋高明 王薇 高梓越. 基于互联网的经编针织物CAD系统开发与实现[J]. 纺织学报, 2018, 39(10): 143-148.
[11] 谢远鹏 蒋高明 张爱军 张燕婷 陈方芳. 双色效应压纱贾卡提花织物的计算机辅助设计[J]. 纺织学报, 2017, 38(12): 157-161.
[12] 王薇 蒋高明 丛洪莲 高梓越 汤梦婷 于璐璐. 基于互联网的纬编针织物计算机辅助设计系统[J]. 纺织学报, 2017, 38(08): 150-155.
[13] 徐强 陈东生 甘应进. 台湾排湾族服饰纹样的文化内涵解读[J]. 纺织学报, 2016, 37(12): 111-116.
[14] 钟君 丛洪莲 张燕婷 张爱军. 经编双贾卡提花鞋面织物的计算机辅助设计[J]. 纺织学报, 2016, 37(11): 148-153.
[15] 李红梅 蒋高明 李欣欣. 带鸟巢效应压纱贾卡提花织物的计算机辅助设计[J]. 纺织学报, 2015, 36(12): 140-145.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!