纺织学报 ›› 2025, Vol. 46 ›› Issue (11): 255-263.doi: 10.13475/j.fzxb.20250504102

• 综合述评 • 上一篇    下一篇

老年人跌倒伤害防护智能服装的研究现状与发展方向

范书乐1,2,3, 王朝晖1,2,3(), 刘欢欢1,2,3, 叶勤文1,2,3   

  1. 1.东华大学 服装与艺术设计学院, 上海 200051
    2.东华大学 现代服装设计与技术教育部重点实验室,上海 200051
    3.上海市纺织智能制造与工程一带一路国际联合实验室, 上海 200051
  • 收稿日期:2025-05-21 修回日期:2025-07-22 出版日期:2025-11-15 发布日期:2025-11-15
  • 通讯作者: 王朝晖(1967—),女,教授,博士。主要研究方向为服装先进制造。E-mail:wzh_sh2007@dhu.edu.cn
  • 作者简介:范书乐(2001—),女,硕士生。主要研究方向为服装先进制造与人体科学研究。
  • 基金资助:
    上海市科学技术委员会“科技创新行动计划”“一带一路”国际合作项目(21130750100)

Research status and development of intelligent fall injury protection clothing for the elderly

FAN Shuyue1,2,3, WANG Zhaohui1,2,3(), LIU Huanhuan1,2,3, YE Qinwen1,2,3   

  1. 1. College of Fashion and Design, Donghua University, Shanghai 200051, China
    2. Key Laboratory of Clothing Design and Technology, Ministry of Education, Donghua University, Shanghai 200051, China
    3. Shanghai Belt and Road Joint Laboratory of Textile Intelligent Manufacturing, Shanghai 200051, China
  • Received:2025-05-21 Revised:2025-07-22 Published:2025-11-15 Online:2025-11-15

摘要:

为应对老年人跌倒高发带来的健康风险,提升老年人跌倒后的防护效果,减轻跌倒伤害,对老年人跌倒伤害防护智能服装的研究进展进行综述。首先梳理了老年人跌倒的发生机制和常见致伤类型,概述了跌倒伤害防护手段由传统缓冲向智能防护演进的过程;然后系统分析了跌倒伤害防护智能服装系统的整体工作原理以及智能监测与智能防护两大核心模块中的关键技术;在此基础上,进一步探讨了未来跌倒伤害防护智能服装在算法智能化、模块微型化、材料轻量化、结构适老化及功能拓展等方面的发展方向,为提升产品性能及推动其在养老照护领域的实用化发展提供理论参考。

关键词: 老年人跌倒伤害, 智能服装, 防护服装, 气囊防护系统, 可穿戴传感器, 跌倒检测算法

Abstract:

Significance With the acceleration of population aging, falls among the elderly have become a major public health concern, often resulting in disability or death. Epidemiological studies show that 30%-50% of older adults fall each year, with 5%-10% suffering serious injuries such as fractures or head trauma. Over 95% of hip fractures are caused by falls, posing serious threats to elderly health and independence. Conventional fall prevention approaches, like environmental modifications or exercise, are pre-emptive and provide limited protection during actual falls. Thus, developing smart wearable products with real-time sensing and active protection capabilities is vital to reduce fall-related injuries. +++Progress Early fall protection products, such as hip pads, offer limited protection due to their restricted coverage, discomfort, and poor appearance, resulting in low user compliance. In recent years, the rapid development of smart wearable technology has greatly promoted the research and development and application of smart fall protection clothing. Intelligent fall protection systems usually consist of two core parts, namely, intelligent monitoring module and active protection module. The system collects the user's motion status data in real time via sensors, and uses the threshold method or machine learning algorithms to identify falls quickly and accurately. When the system detects a fall, the control module immediately commands the airbag inflator to rapidly deploy the protective structure to protect high-risk areas such as the head, hip, and spine before the human body touches the ground, effectively reducing the risk of injury. In addition, some studies have integrated wireless communication modules into the system, which automatically sends alarm information to caregivers or medical terminals when the fall is triggered, thus realising timely positioning and rescue interventions after the fall. Currently, intelligent fall protection products based on airbags have been widely used in high-risk sports, but wearable protection products for the daily life of the elderly are still at an early stage of research and development, and need to be further optimised and improved in terms of comfort, maturity and stability. +++Conclusion and Prospect Intelligent fall injury protection clothing has shown significant advantages in real-time monitoring, efficient protection and good wearing experience in dealing with the risk of falling in the elderly, which has broad research value and application potential. Based on the current research status and future trends, the further development of intelligent fall injury protection clothing should focus on the following aspects. For intelligent recognition and algorithm optimization, multimodal sensor data and deep learning are incorporated to enhance fall detection accuracy and adaptability to complex real-world conditions. In system integration and module miniaturization, flexible electronics and textile circuits are promoted to achieve embedded and invisible designs that enhance wearability, reduce weight, and improve device reliability. In achieving lightweight materials and flexible structure, high-strength, lightweight airbag materials are developed and fabric structures and coatings are optimized to enhance pressure resistance and comfort. Structural innovations, such as foldable or hollow support designs, can improve conformity to the body while reducing overall weight. In the case of age-friendly design and wearing experience, tailored designs are carried out for elderly users by focusing on loose fits, ease of wearing, intuitive interfaces, and soft, skin-friendly materials. These adaptations aim to increase acceptance, safety, and everyday usability. In terms of multifunctional expansion and intelligent linkage, features are extended beyond fall protection by integrating heart rate, blood oxygen, and respiration monitoring. Combining positioning and communication modules enables automatic alerts and remote response. Linkage with intelligent household systems and elderly care platforms will help build multi-level safety networks and improve home care services. With continued advancements in cross-disciplinary innovation, intelligent airbag-based protection clothing is expected to become a practical and efficient solution to the increasing fall risk faced by aging populations.

Key words: fall in the elderly, intelligent clothing, protection clothing, airbag protection system, wearable sensor, fall detection algorithm

中图分类号: 

  • TS941

图1

跌倒类型及易受伤害部位"

图2

跌倒伤害防护智能服装系统关键模块"

图3

跌倒自动监测技术分类"

图4

跌倒伤害防护智能服装的整体集成设计示意图"

[1] 中国疾病预防控制中心慢性非传染性疾病预防控制中心介绍[J/OL]. 伤害医学(电子版), 2018, 7(2): 2, 65.
Introduction of China center for disease control and prevention center for chronic non-communicable diseases[J/OL]. Injury Medicine (Electronic Edition), 2018, 7(2): 2, 65.
[2] HADDAD Y K, BERGEN G, FLORENCE C S. Estimating the economic burden related to older adult falls by state[J]. Journal of Public Health Management and Practice, 2019, 25(2): E17-E24.
[3] 刘洋. 我国社区老年人跌倒状况及居家环境影响因素研究[D]. 北京: 北京协和医学院, 2025:1-10.
LIU Yang. Fall prevalence and the home environmental factors among community-dwelling older adults in China[D]. Beijing: Peking Union Medical College, 2025:1-10.
[4] 于晓坤, 关娟娟, 罗洋. 女性老年人髋关节抗冲击保护裤装的设计开发[J]. 东华大学学报(自然科学版), 2020, 46(5): 733-739.
YU Xiaokun, GUAN Juanjuan, LUO Yang. Design and development of anti-impact hip protection pants for elderly female[J]. Journal of Donghua University (Natural Science), 2020, 46(5): 733-739.
[5] QUIGLEY P A, SINGHATAT W, TARBERT R J. Technology innovation to protect hips from fall-related fracture[J]. Physical Medicine and Rehabilitation Research, 2019, 4: 1-4.
[6] XIMENES M A M, BRANDÃO M G S A, MACÊDO T S, et al. Efetividade de tecnologia educacional Para prevenção de Quedas em ambiente hospitalar[J]. Acta Paulista de Enfermagem, 2022, 35: eAPE01372.
[7] PIERLEONI P, BELLI A, PALMA L, et al. A high reliability wearable device for elderly fall detection[J]. IEEE Sensors Journal, 2015, 15(8): 4544-4553.
doi: 10.1109/JSEN.2015.2423562
[8] AMBROSE A F, PAUL G, HAUSDORFF J M. Risk factors for falls among older adults: a review of the literature[J]. Maturitas, 2013, 75(1): 51-61.
doi: 10.1016/j.maturitas.2013.02.009 pmid: 23523272
[9] MAO L Y, LIANG D, NING Y K, et al. Pre-impact and impact detection of falls using built-In tri-accelerometer of smartphone[C]// Health Information Science. Cham: Springer International Publishing, 2014: 167-174.
[10] MORELAND B, KAKARA R, HENRY A. Trends in nonfatal falls and fall-related injuries among adults aged ≥65 years-United States, 2012-2018[J]. MMWR Morbidity and Mortality Weekly Report, 2020, 69(27): 875-881.
doi: 10.15585/mmwr.mm6927a5
[11] JAMES S L, LUCCHESI L R, BISIGNANO C, et al. The global burden of falls: global, regional and national estimates of morbidity and mortality from the global burden of disease study 2017[J]. Injury Prevention, 2020, 26(Supp 1): i3-i11.
[12] GANZ D A, LATHAM N K. Prevention of falls in community-dwelling older adults[J]. New England Journal of Medicine, 2020, 382(8): 734-743.
doi: 10.1056/NEJMcp1903252
[13] VAISHYA R, VAISH A. Falls in older adults are serious[J]. Indian Journal of Orthopaedics, 2020, 54(1): 69-74.
doi: 10.1007/s43465-019-00037-x pmid: 32257019
[14] CIANFEROTTI L, FOSSI C, BRANDI M L. Hip protectors: are they worth it?[J]. Calcified Tissue International, 2015, 97(1): 1-11.
doi: 10.1007/s00223-015-0002-9 pmid: 25926045
[15] 陈凌娴, 李俊, 王敏. 护膝防护性能及其功能设计研究进展[J]. 毛纺科技, 2022, 50(3): 117-123.
CHEN Lingxian, LI Jun, WANG Min. Research progress of the protective performance and functional design of kneepad[J]. Wool Textile Journal, 2022, 50(3): 117-123.
[16] AHN S, CHOI D, KIM J, et al. Optimization of a pre-impact fall detection algorithm and development of hip protection airbag system[J]. Sensors and Materials, 2018, 30(8): 1743.
doi: 10.18494/SAM.2018.1876
[17] JEONG Y, AHN S, KIM J, et al. Impact attenuation of the soft pads and the wearable airbag for the hip protection in the elderly[J]. International Journal of Precision Engineering and Manufacturing, 2019, 20(2): 273-283.
doi: 10.1007/s12541-019-00053-9
[18] ZHONG Z C, CHEN F Y, ZHAI Q, et al. A real-time pre-impact fall detection and protection system[C]// 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). New York: IEEE, 2018: 1039-1044.
[19] BIAN Z P, HOU J H, CHAU L P, et al. Fall detection based on body part tracking using a depth camera[J]. IEEE Journal of Biomedical and Health Informatics, 2015, 19(2): 430-439.
doi: 10.1109/JBHI.2014.2319372
[20] ZIGEL Y, LITVAK D, GANNOT I. A method for automatic fall detection of elderly people using floor vibrations and sound: proof of concept on human mimicking doll falls[J]. IEEE Transactions on Bio-Medical Engineering, 2009, 56(12): 2858-2867.
doi: 10.1109/TBME.10
[21] BOUTELLAA E, KERDJIDJ O, GHANEM K. Covariance matrix based fall detection from multiple wearable sensors[J]. Journal of Biomedical Informatics, 2019, 94: 103189.
doi: 10.1016/j.jbi.2019.103189
[22] ROUGIER C, MEUNIER J, ST-ARNAUD A, et al. 3D head tracking for fall detection using a single calibrated camera[J]. Image and Vision Computing, 2013, 31(3): 246-254.
doi: 10.1016/j.imavis.2012.11.003
[23] WANG S K, CHEN L, ZHOU Z X, et al. Human fall detection in surveillance video based on PCANet[J]. Multimedia Tools and Applications, 2016, 75(19): 11603-11613.
doi: 10.1007/s11042-015-2698-y
[24] LI M, XU G H, HE B, et al. Pre-impact fall detection based on a modified zero moment point criterion using data from kinect sensors[J]. IEEE Sensors Journal, 2018, 18(13): 5522-5531.
doi: 10.1109/JSEN.2018.2833451
[25] DAHER M, EL BADAOUI EL NAJJAR M, et al. Automatic fall detection system using sensing floors[J]. International Journal of Computing and Information Sciences, 2016, 12(1): 75-82.
doi: 10.21700/ijcis
[26] SHALINI V B, BEENAPATI C, A J, et al. Intelligent fall protection device for geriatric people[C]// 2024 Second International Conference on Intelligent Cyber Physical Systems and Internet of Things (ICoICI). New York: IEEE, 2024: 831-835.
[27] VAN THANH P, TRAN D T, NGUYEN D C, et al. Development of a real-time, simple and high-accuracy fall detection system for elderly using 3-DOF accelerometers[J]. Arabian Journal for Science and Engineering, 2019, 44(4): 3329-3342.
doi: 10.1007/s13369-018-3496-4
[28] WU F L, ZHAO H Y, ZHAO Y, et al. Development of a wearable-sensor-based fall detection system[J]. International Journal of Telemedicine and Applications, 2015, 2015: 576364.
[29] DE QUADROS T, LAZZARETTI A E, SCHNEIDER F K. A movement decomposition and machine learning-based fall detection system using wrist wearable device[J]. IEEE Sensors Journal, 2018, 18(12): 5082-5089.
doi: 10.1109/JSEN.2018.2829815
[30] SHI G Y, ZHANG J Y, DONG C, et al. Fall detection system based on inertial mems sensors: analysis design and realization[C]// 2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER). New York: IEEE, 2015: 1834-1839.
[31] MAO A H, MA X D, HE Y N, et al. Highly portable, sensor-based system for human fall monitoring[J]. Sensors, 2017, 17(9): 2096.
doi: 10.3390/s17092096
[32] SUCERQUIA A, LÓPEZ J D, VARGAS-BONILLA J F. Real-life/real-time elderly fall detection with a triaxial accelerometer[J]. Sensors, 2018, 18(4): 1101.
doi: 10.3390/s18041101
[33] 涂亚庆, 陈鹏, 陈宝欣, 等. 基于离散特征的跌倒检测智能方法及应用[J]. 仪器仪表学报, 2017, 38(3):629-634.
TU Yaqing, CHEN Peng, CHEN Baoxin, et al. Intelligent fall detection method based on discrete feature and its application[J]. Journal of Instrumentation, 2017, 38(3): 629-634.
[34] HUANG C N, CHAN C T. A ZigBee-based location-aware fall detection system for improving elderly tele-care[J]. International Journal of Environmental Research and Public Health, 2014, 11(4): 4233-4248.
doi: 10.3390/ijerph110404233
[35] PHU P T, HAI N T, TAM N T. A threshold algorithm in a fall alert system for elderly people[M]// 5th International Conference on Biomedical Engineering in Vietnam. Cham: Springer International Publishing, 2015: 347-350.
[36] 彭亚平, 贺乾格, 柯希垚, 等. 一种基于加速度传感器的摔倒检测腰带[J]. 电子测量技术, 2018, 41(11): 117-120.
PENG Yaping, HE Qiange, KE Xiyao, et al. An anti-fall detection belt based on accelerometer[J]. Electronic Measurement Technology, 2018, 41(11): 117-120.
[37] HSIEH C Y, LIU K C, HUANG C N, et al. Novel hierarchical fall detection algorithm using a multiphase fall model[J]. Sensors, 2017, 17(2): 307.
doi: 10.3390/s17020307
[38] PUTRA I P E S, BRUSEY J, GAURA E, et al. An event-triggered machine learning approach for accelerometer-based fall detection[J]. Sensors, 2017, 18(1): 20.
doi: 10.3390/s18010020
[39] 何坚, 周明我, 王晓懿. 基于卡尔曼滤波与k-NN算法的可穿戴跌倒检测技术研究[J]. 电子与信息学报, 2017, 39(11): 2627-2634.
HE Jian, ZHOU Mingwo, WANG Xiaoyi. Wearable method for fall detection technology based on Kalman filter and k-NN algorithm[J]. Journal of Electronics and Information Technology, 2017, 39(11): 2627-2634.
[40] HNOOHOM N, JITPATTANAKUL A, INLUERGSRI P, et al. Multi-sensor-based fall detection and activity daily living classification by using ensemble learning[C]// 2018 International ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunications Engineering (ECTI-NCON). New York: IEEE, 2018: 111-115.
[41] AL-OKBY M F R, AL-BARRAK S S. New approach for fall detection system using embedded technology[C]// 2020 IEEE 24th International Conference on Intelligent Engineering Systems (INES). New York: IEEE, 2020: 209-214.
[42] LUO Y L, SHI G Y, LAM J, et al. Towards a human airbag system using/SPL MU/IMU with SVM training for falling-motion recognition[C]// 2005 IEEE International Conference on Robotics and Biomimetics-ROBIO. New York: IEEE, 2006: 634-639.
[43] TAMURA T, YOSHIMURA T, SEKINE M, et al. A wearable airbag to prevent fall injuries[J]. IEEE Transactions on Information Technology in Biomedicine, 2009, 13(6): 910-914.
doi: 10.1109/TITB.2009.2033673 pmid: 19846379
[44] Hip'Air可穿戴式安全气囊,给臀部多一重保护[EB/OL].(2018-01-09)[2025-05-08]. https://k.sina.cn/article_1646897097_6229a7c900100227p.html.
Hip'Air wearable airbag provides an extra layer of protection for your hips[EB/OL]. (2018-01-09) [2025-05-08]. https://k.sina.cn/article_1646897097_6229a7c900100227p.html.
[45] 苏州衣带保智能技术有限公司[EB/OL]. [2025-05-08]. http://wx.zgznhh.com/.
Suzhou Yidai Bao Intelligent Technology Co., Ltd.[EB/OL]. [2025-05-08]. http://wx.zgznhh.com/.
[46] 信安智囊-智能气囊防护大师[EB/OL]. [2025-05-08]. https://s-airbag.com/.
Security Expert-Intelligent Airbag protection master[EB/OL]. [2025-05-08]. https://s-airbag.com/.
[47] 诸文旎, 祝国成. 安全气囊织物发展现状[J]. 现代纺织技术, 2021, 29(3): 40-44.
ZHU Wenni, ZHU Guocheng. Development status of airbag fabric[J]. Advanced Textile Technology, 2021, 29(3): 40-44.
[48] 日本发明穿戴式安全气囊[EB/OL]. [2025-05-08]. https://news.sohu.com/20080926/n259757656.shtml.
Japanese invention of wearable safety airbags[EB/OL]. [2025-05-08]. https://news.sohu.com/20080926/n259757656.shtml.
[49] AHN S, KIM J, KOO B, et al. Evaluation of inertial sensor-based pre-impact fall detection algorithms using public dataset[J]. Sensors, 2019, 19(4): 774.
doi: 10.3390/s19040774
[50] WANG S B, SUN J X, LIU S W. Fall prevention system based on airbag protection and mechanical exoskeleton support[J]. MATEC Web of Conferences, 2021, 336: 02015.
doi: 10.1051/matecconf/202133602015
[51] Compare D-air ® Models[EB/OL]. [2025-05-08]. https://www.dainese.com/im/en/compared-air-models.html.
[52] SHI G Y, CHAN C S, LI W J, et al. Mobile human airbag system for fall protection using MEMS sensors and embedded SVM classifier[J]. IEEE Sensors Journal, 2009, 9(5): 495-503.
doi: 10.1109/JSEN.2008.2012212
[53] 刘欢欢, 孟虎, 王朝晖. 适老化智能可穿戴设计研究进展及发展趋势[J]. 纺织学报, 2024, 45(3): 236-243.
LIU Huanhuan, MENG Hu, WANG Zhaohui. Progress and trends in application of wearable technology for elderly population[J]. Journal of Textile Research, 2024, 45(3): 236-243.
[54] MUHAMMAD K, FARGHALY S, ALASWAD M, et al. Functional design methods for elderly clothes[J]. Journal of Textiles, Coloration and Polymer Science, 2024, 21(2):285-291.
[55] LU H C, WU F G, YANG W Y, et al. The clothing design for the elderly care[M]// Human-computer interaction. design practice in contemporary societies. Cham: Springer International Publishing, 2019: 33-46.
[56] 杨璨. 基于户外运动监测功能的老年服装设计[J]. 上海纺织科技, 2020, 48(5): 42-45.
YANG Can. Research on the design of aged clothing based on outdoor sports monitoring function[J]. Shanghai Textile Science & Technology, 2020, 48(5): 42-45.
[1] 杜雨杭, 侯东昱, 齐鹏飞. 基于摩擦纳米发电机原理的智能服装供能设计与优化[J]. 纺织学报, 2025, 46(11): 211-220.
[2] 崔文, 王云仪, 戴艳阳, 李俊. 服装阻力矩在作业效能评估中的应用研究进展[J]. 纺织学报, 2025, 46(08): 263-271.
[3] 吴雪杨, 徐启程, 单英浩, 林孝武, 刘晨铭. 集太阳能与电磁能量收集的人体可穿戴纳电网系统设计[J]. 纺织学报, 2025, 46(07): 202-208.
[4] 王旭, 李环宇, 付凡, 杨伟峰, 龚维. 镍掺杂液态金属复合纤维的连续制备及其应用[J]. 纺织学报, 2025, 46(06): 23-30.
[5] 张嘉诚, 于影, 左雨欣, 顾志清, 汤腾飞, 陈洪立, 吕勇. 聚丙烯腈/二硫化钼纤维薄膜的挠曲电效应与扭转传感特性[J]. 纺织学报, 2025, 46(06): 80-87.
[6] 丛洪莲, 方蕾妹, 姜菲, 李慧建, 俞旭良. 基于功能分区的横编防护外套模块化设计[J]. 纺织学报, 2025, 46(05): 227-235.
[7] 王军, 殷晓玉, 周晓琪, 王思远. 智能矫姿服装设计[J]. 纺织学报, 2025, 46(04): 179-186.
[8] 严艺, 朱达辉. 老年智能服装研究现状与发展趋势[J]. 纺织学报, 2025, 46(04): 244-254.
[9] 马帅, 张西临, 黄宽, 王崴, 瞿珏. 中国男性飞行员体型特征分类[J]. 纺织学报, 2025, 46(01): 163-169.
[10] 侯煜杰, 刘欢欢, 王朝晖. 智能坐姿矫正服装研究现状与发展趋势[J]. 纺织学报, 2024, 45(08): 250-258.
[11] 王建萍, 朱妍西, 沈津竹, 张帆, 姚晓凤, 于卓灵. 软体机器人在服装领域的应用进展[J]. 纺织学报, 2024, 45(05): 239-247.
[12] 王馨雨, 田明伟. 具有距离监测与辅助提示功能的自闭症儿童智能服装设计[J]. 纺织学报, 2024, 45(03): 156-162.
[13] 杨光, 杨小兵, 栗丽, 姚之凤, 周川, 张明明. 新修定的化学防护服国家标准解析[J]. 纺织学报, 2024, 45(03): 163-168.
[14] 王中昱, 苏云, 王云仪. 机器学习建立的个体热舒适模型及其在服装领域的应用展望[J]. 纺织学报, 2023, 44(05): 228-236.
[15] 戴艳阳, 王诗潭, 王云仪, 李俊. 基于运动生物力学的防护服装活动性能研究进展[J]. 纺织学报, 2022, 43(11): 212-218.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!