纺织学报 ›› 2020, Vol. 41 ›› Issue (12): 31-36.doi: 10.13475/j.fzxb.20200203306

• 纤维材料 • 上一篇    下一篇

交联改性对敷料用壳聚糖/聚氧化乙烯纳米纤维膜性能的影响

汪希铭, 程凤, 高晶(), 王璐   

  1. 东华大学 纺织学院, 上海 201620
  • 收稿日期:2020-02-17 修回日期:2020-04-28 出版日期:2020-12-15 发布日期:2020-12-23
  • 通讯作者: 高晶
  • 作者简介:汪希铭(2000—),男。主要研究方向为生物医用纺织材料。

Effect of cross-linking modification on properties of chitosan/polyoxyethylene nanofiber membranes towards wound care

WANG Ximing, CHENG Feng, GAO Jing(), WANG Lu   

  1. College of Textiles, Donghua University, Shanghai 201620, China
  • Received:2020-02-17 Revised:2020-04-28 Online:2020-12-15 Published:2020-12-23
  • Contact: GAO Jing

摘要:

为改善壳聚糖基纳米纤维膜的耐水性和结构稳定性,对静电纺丝制得的壳聚糖/聚氧化乙烯(PEO)纳米纤维膜进行戊二醛交联改性,研究不同交联时间下纳米纤维膜在模拟人体缓冲液中微观形态结构、化学结构和结晶结构的变化,并对交联后纤维膜的耐水性和力学性能进行表征。结果表明:壳聚糖基纳米纤维膜经戊二醛交联处理后,在缓冲液中浸泡24 h纤维形态的稳定性得到明显改善,且随着交联时间的增加,纤维膜在缓冲液中的吸水率逐渐增加,溶失率逐渐降低;交联改性改变了壳聚糖大分子固有的结晶结构,使纤维膜的初始模量提高,力学强度随交联时间的增加先增加后降低。

关键词: 壳聚糖, 聚氧化乙烯, 静电纺丝, 交联改性, 医用敷料, 力学性能

Abstract:

In order to improve the structural stability and water resistance of chitosan-based nanofiber membranes, the glutaraldehyde cross-linking modification to the chitosan/polyoxyethylene nanofiber membranes prepared by electrospinning was carried out. Then,the nanofiber membranes of different crossing-linking time were immersed into phosphate buffer saline simulating body fluid environment in order to characterize its microstructure, chemical and crystalline structure, and the water resistance and mechanical properties was measured. The experimental results show that after glutaraldehyde cross-linking modification, the stability of the fiber structure is improved after soaking in the buffer for 24 h,and the water absorption ratio of nanofiber membranes in phosphate buffer saline gradually increases with the cross-linking time and the dissolution ratio gradually decreases, revealing that the cross-linking treatment has a positive effect on the structural stability and water resistance of the fiber membrane. It is also found that the cross-linking modification causes a strong interaction between the molecules, and changes the inherent crystalline structure of chitosan macromolecules, resulting in an increase in the initial modulus of the fiber membrane. In addition, the research shows that the mechanical strength of the nanofiber membranes increases first and then decreases with the extension of the cross-linking time. The cross-linking treatment increases both the strength and brittleness of the fiber membranes.

Key words: chitosan, polyoxyethylene, electrospinning, cross-linking modification, wound care, mechanical property

中图分类号: 

  • TS171

图1

不同交联时间的纳米纤维膜经PBS浸泡24 h前后的扫描电镜照片(×5 000)"

图2

纳米纤维膜和CS的红外光谱图"

图3

纳米纤维膜和CS的X射线衍射图"

图4

不同交联时间的纳米纤维膜在PBS溶液中浸泡24 h后的吸水率与质量损失率"

表1

不同交联时间的纳米纤维膜的力学性能"

交联时间/h 断裂强度/MPa 断裂伸长率/%
0 2.42±0.75 20.12±14.46
4 2.59±0.55 3.62±0.54
8 3.85±0.59 4.62±1.24
12 0.99±0.33 1.12±0.29
24 1.96±0.64 4.12±0.53
[1] YOUNES I, RINAUDO M. Chitin and chitosan preparation from marine sources: structure, properties and applications[J]. Marine Drugs, 2015,13(3):1133-1174.
pmid: 25738328
[2] AHMED T A, ALJAEID B M. Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery[J]. Drug Design Development and Therapy, 2016,10:483-507.
[3] LOGITHKUMAR R, KESHAVNARAYAN A, DHIVYA S, et al. A review of chitosan and its derivatives in bone tissue engineering[J]. Carbohydrate Polymers, 2016,151:172-188.
doi: 10.1016/j.carbpol.2016.05.049 pmid: 27474556
[4] JAYAKUMAR R, PRABAHARAN M, SUDHEESH K P T, et al. Biomaterials based on chitin and chitosan in wound dressing applications[J]. Biotechnology Advances, 2011,29(3):322-337.
doi: 10.1016/j.biotechadv.2011.01.005 pmid: 21262336
[5] KHORSHIDI S, SOLOUK A, MIRZADEH H, et al. A review of key challenges of electrospun scaffolds for tissue-engineering applications[J]. Journal of Tissue Engineering and Regenerative Medicine, 2016,10(9):715-738.
doi: 10.1002/term.1978 pmid: 25619820
[6] 付译鋆, 安琪, 张伟, 等. 壳聚糖基纳米纤维载药体系及其缓释行为[J]. 纺织学报, 2018,39(12):7-12.
FU Yijun, AN Qi, ZHANG Wei, et al. Chitosan based nanofiber drug loaded system and its sustained release behavior[J]. Journal of Textile Research, 2018,39(12):7-12.
[7] ADELI H, KHORASANI M T, PARVAZINIA M. Wound dressing based on electrospun PVA/chitosan/starch nanofibrous mats: fabrication, antibacterial and cytocompatibility evaluation and in vitro healing assay[J]. International Journal of Biological Macromolecules, 2019,122:238-254.
pmid: 30342125
[8] CHEN Q C, WU J, LIU Y, et al. Electrospun chitosan/PVA/bioglass Nanofibrous membrane with spatially designed structure for accelerating chronic wound healing[J]. Materials Science & Engineering C: Materials for Biological Applications, 2019,105:110083.
doi: 10.1016/j.msec.2019.110083 pmid: 31546466
[9] REN X X, XU Z P, WANG L B, et al. Silk fibroin/chitosan/halloysite composite medical dressing with antibacterial and rapid haemostatic properties[J]. Materials Research Express, 2019.DOI: 10.1088/2053-1591/ab5533.
doi: 10.1088/2053-1591/3/9/094001 pmid: 32391160
[10] OHKAWA K, MINATO K I, KUMAGAI G, et al. Chitosan nanofiber[J]. Biomacromolecules, 2006,7(11):3291-3294.
pmid: 17096563
[11] BÖSIGER P, RICHARD I M T, GAT L L, et al. Application of response surface methodology to tailor the surface chemistry of electrospun chitosan-poly(ethylene oxide) fibers[J]. Carbohydrate Polymers, 2018,186:122-131.
doi: 10.1016/j.carbpol.2018.01.038 pmid: 29455969
[12] KOOSHA M, MIRZADEH H. Electrospinning, mechanical properties, and cell behavior study of chitosan/PVA nanofibers[J]. Journal of Biomedical Materials Research: Part A, 2015,103(9):3081-3093.
doi: 10.1002/jbm.a.v103.9
[13] GENG X, KWON O H, JANG J. Electrospinning of chitosan dissolved in concentrated acetic acid solu-tion[J]. Biomaterials, 2005,26(27):5427-5432.
pmid: 15860199
[14] KIANFAR P, VITALE A, DALLE V S, et al. Photo-crosslinking of chitosan/poly(ethylene oxide)electrospun nanofibers[J]. Carbohydrate Polymers, 2019,217:144-151.
doi: 10.1016/j.carbpol.2019.04.062 pmid: 31079670
[15] 王晓丽. 壳聚糖基载银电纺纳米纤维膜的制备及性能研究[D]. 上海:东华大学, 2014: 36-40.
WANG Xiaoli. Study on preparation and properties of sliver loaded chitosan based electrospun nanofiber membrane[D]. Shanghai: Donghua University, 2014: 36-40.
[16] KRIEGEL C, KIT K M, MCCLEMENTS D J, et al. Electrospinning of chitosan-poly(ethylene oxide) blend nanofibers in the presence of micellar surfactant solutions[J]. Polymer, 2009,50(1):189-200.
doi: 10.1016/j.polymer.2008.09.041
[17] MEHDI P, MARIE-CLAUDE H, ABDELLAH A. A fundamental study of chitosan/PEO electrospinning[J]. Polymer, 2011,52(21):4913-4824.
[18] 许乐, 杨庆, 黄丽媛, 等. 壳聚糖/聚氧化乙烯静电纺丝工艺研究[J]. 合成纤维工业, 2011,34(4):28-30.
XU Le, YANG Qing, HUANG Liyuan, et al. Study on chitosan/polyethylene oxide electrospinning process[J]. China Synthetic Fiber Industry, 2011,34(4):28-30.
[19] FENG C, JING G, LU W, et al. Composite chitosan/poly(ethylene oxide) electrospun nanofibrous mats as novel wound dressing matrixes for the controlled release of drugs[J]. Journal of Applied Polymer Science, 2015. DOI: 10.1002/app.42060.
doi: 10.1002/app.40297 pmid: 25382868
[20] ZHANG Y M, JIANG J M, CHEN Y M. Synjournal and antimicrobial activity of polymeric guanidine and biguanidine salts[J]. Polymer, 1999,40(22):6189-6198.
doi: 10.1016/S0032-3861(98)00828-3
[21] 程凤. 载药抗菌创伤敷料的制备与性能研究[D]. 上海:东华大学, 2015: 29-39.
CHENG Feng. Study on preparation and properties ofantimicrobial drug loaded wound dressing[D]. Shanghai: Donghua University, 2015: 29-39.
[1] 杨萍, 严飙, 马丕波. 网状结构织物制备与应用研究进展[J]. 纺织学报, 2021, 42(01): 175-180.
[2] 陈云博, 朱翔宇, 李祥, 余弘, 李卫东, 徐红, 隋晓锋. 相变调温纺织品制备方法的研究进展[J]. 纺织学报, 2021, 42(01): 167-174.
[3] 王赫, 王洪杰, 阮芳涛, 凤权. 静电纺聚丙烯腈/线性酚醛树脂碳纳米纤维电极的制备及其性能[J]. 纺织学报, 2021, 42(01): 22-29.
[4] 杨刚, 李海迪, 乔燕莎, 李彦, 王璐, 何红兵. 聚乳酸-己内酯/纤维蛋白原纳米纤维基补片的制备与表征[J]. 纺织学报, 2021, 42(01): 40-45.
[5] 陈美玉, 刘玉琳, 胡革明, 孙润军. 涡流纺纱线的包缠加捻对其力学性能的影响[J]. 纺织学报, 2021, 42(01): 59-66.
[6] 宋星, 金肖克, 祝成炎, 蔡冯杰, 田伟. 玻璃纤维/光敏树脂复合材料的3D打印及其力学性能[J]. 纺织学报, 2021, 42(01): 73-77.
[7] 杨宇晨, 覃小红, 俞建勇. 静电纺纳米纤维功能性纱线的研究进展[J]. 纺织学报, 2021, 42(01): 1-9.
[8] 刘淑强, 武捷, 吴改红, 阴晓龙, 李甫, 张曼. 纳米SiO2对玄武岩纤维的表面改性[J]. 纺织学报, 2020, 41(12): 37-41.
[9] 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 聚偏氟乙烯/FeCl3复合纤维膜柔性传感器的制备及其性能[J]. 纺织学报, 2020, 41(12): 13-20.
[10] 王利媛, 康卫民, 庄旭品, 鞠敬鸽, 程博闻. 磺化聚醚砜纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(11): 19-26.
[11] 李好义, 许浩, 陈明军, 杨涛, 陈晓青, 阎华, 杨卫民. 纳米纤维吸声降噪研究进展[J]. 纺织学报, 2020, 41(11): 168-173.
[12] 王子希, 胡毅. 基于ZnCo2O4的多孔碳纳米纤维制备及其储能性能[J]. 纺织学报, 2020, 41(11): 10-18.
[13] 韩佳蕊, 黄珍珍, 王佳珺, 殷淏, 高晶, 劳继红, 王璐. 医用敷料用柔性金属电极的制备及其细胞毒性分析[J]. 纺织学报, 2020, 41(09): 174-182.
[14] 秦益民. 含银海藻酸盐医用敷料的临床应用[J]. 纺织学报, 2020, 41(09): 183-190.
[15] 潘璐, 程亭亭, 徐岚. 聚己内酯/聚乙二醇大孔径纳米纤维膜的制备及其在组织工程支架中的应用[J]. 纺织学报, 2020, 41(09): 167-173.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!