纺织学报 ›› 2025, Vol. 46 ›› Issue (06): 160-167.doi: 10.13475/j.fzxb.20240901601

• 染整工程 • 上一篇    下一篇

新型多孔分散染料复合纳米球的合成及其性能

张帅1,2, 王金坤1,2, 房宽峻3(), 马君志1,2, 宋焱1,2   

  1. 1.德州学院 纺织服装学院, 山东 德州 253023
    2.德州学院 新型纤维与功能纺织品创新研究院, 山东 德州 253023
    3.生态纺织省部共建协同创新中心, 山东 青岛 266071
  • 收稿日期:2024-09-10 修回日期:2025-03-03 出版日期:2025-06-15 发布日期:2025-07-02
  • 通讯作者: 房宽峻(1963—),男,教授,博士。主要研究方向为纺织品清洁染整技术。E-mail: 13808980221@163.com
  • 作者简介:张帅(1993—),男,讲师。主要研究方向为纺织品清洁染整技术。
  • 基金资助:
    山东省重大科技创新工程项目(2019TSLH0108);德州学院校级人才引进项目(2024xjrc113)

Synthesis and properties of novel porous dispersed dye composite nanospheres

ZHANG Shuai1,2, WANG Jinkun1,2, FANG Kuanjun3(), MA Junzhi1,2, SONG Yan1,2   

  1. 1. College of Textile and Clothing, Dezhou University, Dezhou, Shandong 253023, China
    2. Innovation Research Institute of New Fibers and Functional Textiles, Dezhou University, Dezhou, Shandong 253023, China
    3. Collaborative Innovation Center for Eco-Textiles of Shandong Province and the Ministry of Education, Qingdao, Shandong 266071, China
  • Received:2024-09-10 Revised:2025-03-03 Published:2025-06-15 Online:2025-07-02

摘要: 为提升分散染料/聚合物纳米球的染料负载量,选取新型内部多孔聚合物纳米球作为载体,采用扩散染色法制备分散染料/聚合物复合纳米球,并将其应用于棉织物表面彩色疏水涂层的构建。借助透射和扫描电子显微镜、X射线元素分析仪对多孔分散染料/聚合物复合纳米球和涂层织物的形貌和结构进行表征,并通过差示扫描量热仪、傅里叶变换红外光谱仪和接触角测量仪等分析其热性能、化学结构及疏水性。结果表明:随着甲苯溶液体积的增加,聚合物纳米球内部孔径逐渐增大,且孔隙结构趋向不均匀;同时,分散染料的负载量呈现先增大后减小的趋势,显示出与纳米球内部孔径和分布的密切关系;分散染料/聚合物复合纳米球具有良好的自固化性能,可在棉织物表面形成薄膜结构;随着喷涂层数的增加,涂层织物的颜色性能和疏水性能逐渐提升,其中水接触角最高达到139.2°,且具有较好的耐摩擦色牢度、耐日晒色牢度、透气透湿性以及耐化学试剂稳定性。

关键词: 分散染料, 多孔结构, 聚合物纳米球, 彩色涂层, 涂层织物, 固化成膜

Abstract:

Objective Disperse dye/polymer nanospheres, as an emerging class of nanopigments, exhibit superior self-curing capabilities and demonstrate broad applicability in dyeing both hydrophilic and hydrophobic textiles. To address the challenge of low dye loading capacity in conventional systems, this study reports on the synthesis of composite nanospheres using novel internally porous polymer nanospheres as carriers. These were subsequently employed to construct vibrant hydrophobic coatings on cotton fabric surfaces.

Method The morphological and physicochemical properties of porous composite nanospheres were systematically analyzed through transmission electron microscopy, X-ray photoelectron spectro-scopy (XPS), and differential scanning calorimetry. Furthermore, the surface morphology, chromatic characteristics (quantified by K/S values), and hydrophobicity (evaluated via contact angle measurements) of coated cotton fabrics were investigated to elucidate the influence of coating layer numbers on performance enhancement.

Results Analysis of porous poly(styrene-butyl acrylate-acrylic acid) (PSBA) nanospheres revealed a direct correlation between toluene volume and pore architecture. While increasing toluene volume enlarged the internal pore size, pore size uniformity deteriorated significantly when the volume exceeded 10 mL. Dye adsorption studies demonstrated that Disperse Red 60 and Blue 60 loading capacities were maximized at intermediate pore sizes, with adsorption levels inversely linked to pore structural heterogeneity. Spectroscopic characterization confirmed successful dye incorporation. Distinct FT-IR absorption bands at 3 451, 3 298, and 1 270 cm-1 corresponded to amine, hydroxyl, and aryl ether functionalities, while XPS detected nitrogen signatures from dye molecules. Thermal analysis identified a glass transition temperature of 94.5 ℃ for disperse dye/porous poly(styrene-butyl acrylate-acrylic acid) (DPSBA) nanospheres, enabling effective film formation upon heating. Coating layer optimization studies revealed that increased spray layers enhanced film continuity on cotton fibers, with elevated curing temperatures further promoting structural consolidation. Hydrophobicity progressively improved with coating layers, achieving a maximum contact angle of 139.2°. Additionally, coated fabrics exhibited robust mechanical durability, with dry/wet rubbing fastness grades of 4-5 and 4, respectively, alongside a sunlight fastness grade of 7-8.

Conclusion This work successfully engineered internally porous disperse dye composite nanospheres and implemented ultrasonic spraying to fabricate multifunctional hydrophobic coatings on cotton textiles. The toluene volume serves as a critical modulator of PSBA nanosphere pore morphology, enabling tunable dye adsorption capacities. DPSBA nanospheres exhibit autonomous film-forming behavior, generating uniform coatings through thermal curing. The chromatic intensity and hydrophobicity scale positively with coating layers, achieving optimal performance at five-layer deposition. The resultant coatings demonstrate exceptional fastness properties, meeting practical durability requirements. This approach provides a sustainable pathway for expanding disperse dye applications in textile functionalization.

Key words: disperse dye, porous structure, polymer nanosphere, color coating, coated fabric, curable film-forming

中图分类号: 

  • TS193

图1

不同甲苯体积下多孔 PSBA纳米球的 TEM 照片"

图2

不同甲苯体积下多孔 PSBA纳米球的染料负载量"

图3

PSBA和DPSBA(DR60)的红外光谱和X射线光电子能谱图"

图4

DPSBA(DR60)纳米球的 DSC 曲线"

表1

不同层数涂层棉织物的颜色参数"

层数 L* a* b* C* K/S
0 90.71 0.06 2.20 2.20 0.03
1 72.06 35.76 -3.70 35.95 0.92
2 65.02 47.10 -1.53 47.13 2.00
3 59.07 54.31 1.25 54.32 3.64
4 56.87 56.93 3.16 57.01 4.71
5 55.52 58.21 5.05 58.43 5.39

图5

不同焙烘温度和不同层数涂层棉织物的SEM照片"

表2

不同层数涂层棉织物的水接触角"

涂层数 水接触角/(°)
0 0
1 70.4
2 122.4
3 131.5
4 134.4
5 139.2

表3

物涂层前后棉织物的物理性能"

样品名称 透气率/
(mm·s-1)
透湿率/
(g·(m2·24 h)-1)
柔软度
原始棉织物 526.8 7 213.8 49.3
涂层棉织物 424.6 6 131.7 42.5

图6

涂层棉织物耐酸碱稳定性和耐有机溶剂稳定性"

[1] 吴伟, 纪柏林, 毛志平. 活性及分散染料染色新技术[J]. 纺织学报, 2023, 44(5):1-12.
WU Wei, JI Bailin, MAO Zhiping. New technologies for dyeing with reactive and dispersed dyes[J]. Journal of Textile Research, 2023, 44 (5): 1-12.
[2] BENKHAYA S, MRABET S, HARFI A. A review on classifications, recent synthesis and applications of textile dyes[J]. Inorganic Chemistry Communications, 2020. DOI: 10.1016/j.inoche.2020.107891.
[3] BERRADI M, HSISSOU R, KHUDHAIR M, et al. Textile finishing dyes and their impact on aquatic environs[J]. Heliyon, 2019. DOI: 10.1016/j.heliyon.2019.e02711.
[4] SALEEM A, PEI L, SALEEM F, et al. Sustainable dyeing of nylon with disperse dyes in decamethylcyclopentasiloxane waterless dyeing system[J]. Journal of Cleaner Production, 2020. DOI: 10.1016/j.jclepro.2020.123258.
[5] 付政, 李敏, 何颖婷, 等. 纳米包覆分散染料的制备及其免水洗染色性能[J]. 纺织学报, 2022, 43 (9):104-111.
FU Zheng, LI Min, HE Yingting, et al. Preparation of nano coated disperse dyes and their water free dyeing properties[J]. Journal of Textile Research, 2022, 43(9):104-111.
[6] SONG Y, FANG K, BUKHARI N, et al. Disperse dye/poly(styrene-methacrylic acid) nanospheres with high coloration performance for textiles[J]. Journal of Cleaner Production, 2020. DOI: 10.1016/j.jclepro.2020.121538.
[7] GAO A, HU L, ZHANG H, et al. Silicone nanomicelle dyeing using the nanoemulsion containing highly dispersed dyes for polyester fabrics[J]. Journal of Cleaner Production, 2018, 200: 48-53.
[8] SONG Y, FANG K, BUKHARI N, et al. Improved inkjet printability of dye-based inks through enhancing the interaction of dye molecules and polymer nanospheres[J]. Journal of Molecular Liquids, 2021. DOI: 10.1016/j.molliq.2020.114702.
[9] EL-SAYED M, KAMEL M, MORSY S, et al. Encapsulation of nano Disperse Red 60 via modified miniemulsion polymerization:I:preparation and characterization[J]. Journal of Applied Polymer Science, 2012, 125(2): 1318-1329.
[10] LI J, FAN J, CAO R, et al. Encapsulated dye/polymer nanoparticles prepared via miniemulsion polymerization for inkjet printing[J]. ACS Omega, 2018, 3(7): 7380-7387.
doi: 10.1021/acsomega.8b01151 pmid: 31458897
[11] FANG K, REN B. A facile method for preparing colored nanospheres of poly (styrene-co-acrylic acid)[J]. Dyes and Pigments, 2014, 100: 50-56.
[12] FANG K, ZHANG L, CAI Y, et al. Hollow disperse dyes/copolymer composite nanospheres[J]. Dyes and Pigments, 2017, 136: 191-196.
[13] 张帅. 多功能染料聚合物复合纳米球的制备与性能研究[D]. 天津: 天津工业大学, 2023:43-44.
ZHANG Shuai. The preparation and performance study of multifunctional dye polymer composite nano-spheres[D]. Tianjin: Tiangong University, 2023: 43-44.
[14] 陈群. 基于P(St-MMA-AA)微球的胶体晶体的制备和光学性能[D]. 青岛: 青岛大学, 2019:1-20.
CHEN Qun. Preparation and optical properties of colloidal crystals based on P(St-MMA-AA) microspheres[D]. Qingdao: Qingdao University, 2019:1-20.
[15] ZHANG S, FANG K, LIU X, et al. Enhanced hydrophobicity and UV resistance of cotton fabrics through the synergistic effect of raspberry-shaped colored nanoparticles and polymethylhydrosiloxane[J]. Applied Surface Science, 2023. DOI: 10.1016/j.apsusc.2023.157849.
[16] ZHANG S, FANG K, LIU X, et al. Enhancement UV-resistance and hydrophobic of cotton fabrics through membrane formation by cationic colored nano-spheres[J]. Surfaces and Interfaces, 2023. DOI: 10.1016/j.surfin.2023.102701.
[1] 殷连博, 李家炜, 段慧敏, 宋理想, 陈玉霜, 厉巽巽, 戚栋明. 液体分散染料染色废水的循环染色[J]. 纺织学报, 2025, 46(03): 131-140.
[2] 解晓康, 江华, 王也, 石璐璐. α-(三氟甲基)苯基重氮酯型染料与合成纤维的反应机制[J]. 纺织学报, 2025, 46(02): 145-152.
[3] 王容容, 周洲, 冯祥, 申莹, 刘峰, 邢剑. 聚酯纤维与聚乙烯/聚丙烯双组分纤维多孔吸声材料的制备及其性能[J]. 纺织学报, 2025, 46(02): 61-68.
[4] 关芳兰, 王建明, 陈嘉滢, 李淑敏. 二醋酯纤维织物分散染料免蒸洗数码印花工艺[J]. 纺织学报, 2024, 45(12): 137-143.
[5] 关玉, 张恒玮, 付政, 付少海. 纳米分散染料胶囊喷墨印花墨水的制备及其性能[J]. 纺织学报, 2024, 45(11): 136-144.
[6] 赵向阳, 闫凯, 龙家杰. 超临界二氧化碳流体中SCFX-AYRL染料的溶解性研究[J]. 纺织学报, 2024, 45(06): 98-104.
[7] 范博, 吴伟, 王健, 徐红, 毛志平. 分散染料在超临界CO2流体染色聚酯纤维中的扩散行为[J]. 纺织学报, 2024, 45(02): 134-141.
[8] 葛怀富, 吴伟, 王健, 徐红, 毛志平. 5-(二甲氨基)-2-甲基-5-氧戊酸甲酯在超临界二氧化碳流体染色中的应用[J]. 纺织学报, 2024, 45(01): 120-127.
[9] 唐奇, 柴丽琴, 徐天伟, 王成龙, 王直成, 郑今欢. 聚乳酸/聚3-羟基丁酸-戊酸酯共混纤维及其雪尼尔纱的染色动力学[J]. 纺织学报, 2023, 44(06): 129-136.
[10] 朱晓荣, 向攸慧, 何佳臻, 翟丽娜. 低辐射热条件下附加相变材料织物的蓄放热双重特性[J]. 纺织学报, 2023, 44(06): 152-160.
[11] 艾丽, 朱亚伟. 液体分散染料研发技术现状及其应用前景[J]. 纺织学报, 2023, 44(05): 220-227.
[12] 易菁源, 裴刘军, 朱赫, 张红娟, 王际平. 非水介质染色体系中分散染料对涤纶/棉混纺织物的沾色研究[J]. 纺织学报, 2023, 44(05): 29-37.
[13] 王小艳, 马子婷, 许长海. 基于高耐碱高耐氧漂分散染料的涤盖棉织物漂染一浴加工工艺[J]. 纺织学报, 2023, 44(05): 38-45.
[14] 吴伟, 纪柏林, 毛志平. 活性及分散染料染色新技术[J]. 纺织学报, 2023, 44(05): 1-12.
[15] 陈智杰, 蒋继康, 虞一浩, 符晔, 吴金丹, 戚栋明. 硅磷改性碳酸钙的合成及其在聚酰胺涂层中应用[J]. 纺织学报, 2023, 44(04): 146-153.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!