纺织学报 ›› 2025, Vol. 46 ›› Issue (06): 168-177.doi: 10.13475/j.fzxb.20241201101

• 染整工程 • 上一篇    下一篇

阻燃聚丙烯腈长丝织物的层层自组装法制备及其性能

丁圆1,2, 赵云霞1,2, 靳高岭3, 杨涛3, 徐静1,2(), 柯福佑1,2, 陈烨1,2   

  1. 1.东华大学 材料科学与工程学院, 上海 201620
    2.东华大学 先进纤维材料全国重点实验室, 上海 201620
    3.中国化学纤维工业协会, 北京 100020
  • 收稿日期:2024-12-06 修回日期:2025-03-06 出版日期:2025-06-15 发布日期:2025-07-02
  • 通讯作者: 徐静(1969—),女,高级工程师,硕士。主要研究方向为聚丙烯腈高性能纤维及聚丙烯腈原丝。E-mail:gemini69@126.com
  • 作者简介:丁圆(1999—),女,硕士生。主要研究方向为高性能纤维改性。
  • 基金资助:
    上海市自然科学基金面上项目(24ZR1400200)

Preparation and properties of flame retardant polyacrylonitrile filament fabrics by layer-by-layer self-assembly method

DING Yuan1,2, ZHAO Yunxia1,2, JIN Gaoling3, YANG Tao3, XU Jing1,2(), KE Fuyou1,2, CHEN Ye1,2   

  1. 1. College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
    2. State Key Laboratory of Advanced Fiber Materials, Donghua University, Shanghai 201620, China
    3. China Chemical Fibers Association, Beijing 100020, China
  • Received:2024-12-06 Revised:2025-03-06 Published:2025-06-15 Online:2025-07-02

摘要: 为拓展聚丙烯腈长丝织物在电缆防护材料领域的应用,采用植酸(PA)/聚乙烯亚胺(PEI)/3-氨丙基三乙氧基硅烷(APTES)构建三元自组装的阻燃体系,采用层层自组装法对聚丙烯腈(PAN)长丝织物进行阻燃处理。对阻燃处理后织物的表面形态、大分子结构以及其热稳定性能和阻燃性能等进行研究。结果表明:经过PA/PEI/APTES交替自组装后,在PAN织物表面有效引入了磷(P)、氮(N)、硅(Si)等元素,其中,Si元素含量提高到3.78%;阻燃改性后PAN织物的极限氧指数从17.4%提升至27.5%,在900 ℃时的残炭量从0%增至13.1%,续燃及阴燃时间都达到0 s,总烟释放量从1.1 m2 减少到0.4 m2,热释放速率峰值从252.4 kW/m2减小到204.7 kW/m2,PAN织物经PA/PEI/APTES交替组装后表现出优异的阻燃性能和抑烟性能。

关键词: 聚丙烯腈, 阻燃, 层层自组装, 植酸, 电缆材料, 3-氨丙基三乙氧基硅烷

Abstract:

Objective Polyacrylonitrile (PAN), is widely used in high-value-added applications, particularly in the development of domestically produced PAN filaments for the shielding covering layer of cable core materials. Cables are predominantly installed in buildings and densely populated areas, making them vulnerable to fire caused by factors such as increased loads, wire short-circuiting, and other electrical faults. During combustion, toxic gases, including hydrogen cyanide (HCN) and carbon monoxide (CO), are released, posing significant risks to human life and property safety. Consequently, enhancing the flame retardant properties of PAN filament fabrics has become a critical research focus in the industry.

Method In order to obtain the environmentally friendly flame retardancy of PAN fabrics, flame retardant polyacrylonitrile filament fabrics were prepared by using PAN filament fabrics as the substrate and constructing on it a ternary self-assembled flame retardant system using phytic acid (PA)/polyethyleneimine (PEI)/3-aminopropyltriethoxysilane (APTES), adopting the layer-by-layer self-assembly method. The surface morphology and macromolecular structure of the flame retardant modified fabrics, as well as their thermal stability and flame retardant properties were investigated.

Results The results showed that after self-assembly of PA/PEI/APTES layers, the flame retardant elements such as phosphorus (P), nitrogen (N) and silicon (Si) were effectively introduced on the surface of the PAN fabric, whereas the untreated PAN fabric had only the presence of C, N and O elements on its surface. The new P element was added on the surface of PAN-PEI fabrics, and the P content was increased to 8.81%, and the H2PO4/PO4 characteristic peaks at 133.8 eV were observed after self-assembly. The characteristic signal of Si element appeared in the XPS spectra when increasing APTES from 1.0% to 3.0%. The characteristic peak of H2PO4/PO4 was also observed. After further introduction of APTES, the Si element was increased from 1.13% to 3.78% when increasing APTES concentration from 1.0% to 3.0%, while the N and P elements were slightly decreased. The residual carbon of the fabrics before and after flame-retardant modification increased from 0 to 13.1% at 900 ℃, the limiting oxygen index (LOI) of the fabrics increased from 17.4% to 27.5%, the sustained ignition and negative ignition time of the fabrics reached 0 s. The total smoke release was decreased by 63.6% from 1.1 to 0.4 m2, and the heat release rate was reduced by 18.9%. The fabrics exhibited excellent performance after PA/PEI/APTES alternating assembly.

Conclusion A ternary flame retardant system of PA/PEI/APTES was constructed using layer-by-layer self-assembly technology, and the flame retardant polyacrylonitrile filament fabrics were successfully prepared, which is expected to be applied to shielding wrapping layers of internal cores of cables as well as to some application environments that do not need to be washed. Compared with the untreated PAN fabrics, the self-assembled flame retardant modified fabrics showed an increase in LOI value from 17.4% to 27.5%, a decrease in the maximum value of heat release rate by 18.9%, and a decrease in the total smoke release by 63.6%, which demonstrated that the flame retardant and smoke inhibition properties of the flame retardant modified fabrics were greatly improved.

Key words: polyacrylonitrile, flame retardant, layer-by-layer self-assembly, phytate, cable material, 3-aminopropyltriethoxysilane

中图分类号: 

  • TS195.17

图1

PAN织物预处理及自组装机制"

图2

层层自组装前后织物的SEM照片"

图3

层层自组装前后织物的SEM照片和N、P、Si元素分布图"

图4

层层自组装前后织物的红外光谱图"

表1

层层自组装前后织物的表面元素含量"

样品名称 Si N P C O
PAN 4.66 78.48 15.49
PAN-PEI 8.39 8.81 45.65 37.15
PAN-1Si 1.13 8.73 7.94 50.75 31.46
PAN-2Si 3.37 8.17 7.68 48.23 32.56
PAN-3Si 3.78 7.19 7.33 47.26 34.44

图5

层层自组装前后织物的XPS谱图"

图6

层层自组装前后织物在空气中的热重曲线"

表2

层层自组装前后织物热性能参数"

样品名称 T5%/℃ T1max/℃ T2max/℃ T3max/℃ 900 ℃时的
残炭量/%
PAN 294 311 380 655 0
PAN-PEI 297 302 411 722 1.9
PAN-1Si 293 302 412 705 3.8
PAN-2Si 284 298 400 773 8.2
PAN-3Si 272 303 396 816 13.1

图7

PA/PEI/APTES三元阻燃体系燃烧机制"

表3

层层自组装前后织物的极限氧指数和垂直燃烧数据"

样品名称 LOI值/% 损毁长度/mm 阴燃时间/s 续燃时间/s
PAN 17.4 300
PAN-PEI 21.8 200
PAN-1Si 21.3 300
PAN-2Si 24.0 148 0 0
PAN-3Si 27.5 65 0 0

图8

层层自组装前后织物的垂直燃烧数码照片"

图9

层层自组装前后织物热释放速率、总热释放速率、烟释放速率和总烟释放量曲线"

图10

锥形量热测试后炭层数码照片 注:第1排为俯视图;第2排为侧视图。"

图11

炭层表面的SEM照片"

图12

层层自组装前后织物残炭的拉曼光谱图"

[1] 丁倩, 吴俊霖, 江慧, 等. 阻燃腈纶/酚醛树脂纤维织物的制备及其性能[J]. 纺织学报, 2024, 45(4): 83-88.
DING Qian, WU Junlin, JIANG Hui, et al. Preparation and properties of flame-retardant acrylic/phenolic resin fabrics[J]. Journal of Textile Research, 2024, 45(4): 83-88.
[2] 吴俊雄, 尉霞, 罗璟娴, 等. 阻燃腈纶/芳纶包芯纱的制备及其紫外光稳定性[J]. 纺织学报, 2023, 44(3): 60-66.
WU Junxiong, WEI Xia, LUO Jingxian, et al. Preparation and UV stability of flame-retardant acrylic/aramid core-spun yarns[J]. Journal of Textile Research, 2023, 44(3): 60-66.
[3] 赵云霞, 徐静, 陈烨, 等. PA/PEI层层自组装改性PAN织物的制备及其阻燃性能研究[J]. 合成纤维工业, 2023, 46(2): 12-17.
ZHAO Yunxia, XU Jing, CHEN Ye, et al. Preparation and flame retardance of PAN fabric modified by PA/PEI layer-by-layer self-assembly[J]. China Synthetic Fiber Industry, 2023, 46(2): 12-17.
[4] 任元林, 姜丽娜, 霍同国, 等. 聚丙烯腈纤维阻燃改性研究进展[J]. 纺织学报, 2019, 40(8): 181-188.
REN Yuanlin, JIANG Li'na, HUO Tongguo, et al. Research progress on flame retardant modification of polyacrylonitrile fiber[J]. Journal of Textile Research, 2019, 40(8): 181-188.
[5] ZHANG Yan, TIAN Wenxiang, LIU Longxiang, et al. Eco-friendly flame retardant and electromagnetic interference shielding cotton fabrics with multi-layered coatings[J]. Chemical Engineering Journal, 2019(372): 1077-1090.
[6] 董金美, 李颖, 文静, 等. KH550硅烷偶联剂的水解工艺研究[J]. 盐湖研究, 2020, 28(3): 28-33.
DONG Jinmei, LI Ying, WEN Jing, et al. Research on hydrolysis process of KH550 silane coupling agent[J]. Journal of Salt Lake Research, 2020, 28(3): 28-33.
[7] LI Zhongfang, ZHANG Chuanjie, CUI Li, et al. Fire retardant and thermal degradation properties of cotton fabrics based on APTES and sodium phytate through layer-by-layer assembly[J]. Journal of Analytical and Applied Pyrolysis, 2017(123): 216-223.
[8] DU Peibo, ZHANG Jinping, GUO Zhiguang, et al. A novel breathable flexible metallized fabric for wearable heating device with flame-retardant and antibacterial properties[J]. Journal of Materials Science & Technology, 2022(122): 200-210.
[9] REN Yuanlin, ZHANG Yue, GU Yetong, et al. Flame retardant polyacrylonitrile fabrics prepared by organic-inorganic hybrid silica coating via sol-gel techni-que[J]. Progress in Organic Coatings, 2017(112): 225-233.
[10] FENG Yajuan, ZHOU Yang, LI Daikun, et al. A plant-based reactive ammonium phytate for use as a flame-retardant for cotton fabric[J]. Carbohydrate Polymers, 2017(175): 636-644.
[11] LI Gang, YOU Fei, ZHOU Songtao, et al. Preparations, characterizations, thermal and flame retardant properties of cotton fabrics finished by boron-silica sol-gel coatings[J]. Polymer Degradation and Stability, 2022.DOI:1016/j.polymdegradstab.2022.110011.
[12] ROSACE Giuseppe, CASTELLANO Angela, TROVATO Valentina, et al. Thermal and flame retardant behaviour of cotton fabrics treated with a novel nitrogen-containing carboxyl-functionalized organophosphorus system[J]. Carbohydrate Polymers, 2018(196): 348-358.
[13] ZHAO Peihua, XIONG Kuankuan, WANG Wentao, et al. Preparation of a halogen-free P/N/Si flame retardant monomer with reactive siloxy groups and its application in cotton fabrics[J]. Chinese Journal of Chemical Engineering 2017, 25(9): 1322-1328.
[14] CHENG Xianwei, LIANG Chenxi, GUAN Jinping, et al. Flame retardant and hydrophobic properties of novel sol-gel derived phytic acid/silica hybrid organic-inorganic coatings for silk fabric[J]. Applied Surface Science, 2018(427): 69-80.
[1] 林思伶, 刘赋瑶, 张成, 侯琳, 徐炎炎, 付冉迁, 樊威. 双向调温阻燃防静电纺织品的制备及其性能[J]. 纺织学报, 2025, 46(06): 38-44.
[2] 张嘉诚, 于影, 左雨欣, 顾志清, 汤腾飞, 陈洪立, 吕勇. 聚丙烯腈/二硫化钼纤维薄膜的挠曲电效应与扭转传感特性[J]. 纺织学报, 2025, 46(06): 80-87.
[3] 廖喜林, 曾媛, 刘淑萍, 李亮, 李淑静, 刘让同. 磷/氮/硅复配协效阻燃棉织物制备及其性能[J]. 纺织学报, 2025, 46(03): 151-157.
[4] 郭庆, 毛阳顺, 任亚杰, 刘济民, 王怀芳, 朱平. 基于漆酶一步催化法的羊毛织物原位染色及阻燃功能化[J]. 纺织学报, 2025, 46(02): 161-169.
[5] 张洁, 郭鑫源, 关晋平, 程献伟, 陈国强. 磷/氮阻燃剂原位沉积对棉织物的耐久阻燃改性[J]. 纺织学报, 2025, 46(02): 180-187.
[6] 宋婉萌, 王宝弘, 孙宇, 杨家祥, 刘云, 王玉忠. 兼具力学性能与高效阻燃性能粘胶织物的制备及其性能[J]. 纺织学报, 2025, 46(02): 188-196.
[7] 赵超, 金欣, 王闻宇, 朱正涛. 自充电超级电容器用聚丙烯腈纳米纤维隔膜的制备及其性能[J]. 纺织学报, 2025, 46(02): 20-25.
[8] 魏一, 徐红, 钟毅, 张琳萍, 毛志平. 聚(环三磷腈-间苯三酚)微球的制备及其在聚酯阻燃中的应用[J]. 纺织学报, 2025, 46(01): 119-129.
[9] 黄田田, 宋媛珠, 赵斌. 单宁酸基阻燃多功能涂层及表面整理Lyocell织物[J]. 纺织学报, 2024, 45(12): 152-158.
[10] 关玉, 王冬, 郭一凡, 付少海. MoS2/MXene阻燃气敏棉织物的制备及其性能[J]. 纺织学报, 2024, 45(12): 159-165.
[11] 杜蕾, 王士杰, 蒋之铭, 朱平. 无卤无磷阻燃聚酰胺超细纤维合成革的制备及其性能[J]. 纺织学报, 2024, 45(11): 162-169.
[12] 邴琳涵, 王锐, 吴雨航, 刘博同, 黄寒江, 魏建斐. 聚对苯二甲酸乙二醇酯基碳点热解法制备及其在阻燃改性中的应用[J]. 纺织学报, 2024, 45(10): 1-8.
[13] 肖宁宁, 陈智杰, 欧阳裕福, 孟金贵, 孙阳艺, 戚栋明. 超细纤维合成革用阻燃水性聚氨酯的制备及其性能[J]. 纺织学报, 2024, 45(09): 113-120.
[14] 王浩然, 于影, 左雨欣, 顾志清, 卢海龙, 陈洪立, 柯俊. 聚乙烯亚胺/聚丙烯腈复合纤维薄膜的制备及其功能化应用[J]. 纺织学报, 2024, 45(09): 26-32.
[15] 刘慧, 李平, 朱平, 刘云. γ-脲基丙基三乙氧基硅烷/苯基膦酸阻燃抗菌棉织物的制备及其性能[J]. 纺织学报, 2024, 45(08): 205-214.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!