纺织学报 ›› 2025, Vol. 46 ›› Issue (08): 28-36.doi: 10.13475/j.fzxb.20241101401

• 纤维材料 • 上一篇    下一篇

聚对苯二甲酸乙二醇酯废弃物基碳点制备工艺优化及其在聚酰胺66中的应用

马超慧1, 崔童然1, 邴琳涵1, 朱志国1, 王锐1,2,3, 魏建斐1,2,3()   

  1. 1.北京服装学院 材料设计与工程学院, 北京 100029
    2.北京服装学院 服装材料研究开发与评价北京市重点实验室, 北京 100029
    3.北京市纺织纳米纤维工程技术研究中心, 北京 100029
  • 收稿日期:2024-11-07 修回日期:2025-04-16 出版日期:2025-08-15 发布日期:2025-08-15
  • 通讯作者: 魏建斐(1986—),男,副教授,博士。主要研究方向为荧光纳米材料及功能纤维的制备与应用。E-mail:weijianfei@bift.edu.cn
  • 作者简介:马超慧(2001—),女,硕士生。主要研究方向为碳点的制备与应用。
  • 基金资助:
    国家重点研发计划(2022-1400602)

Optimization of preparation technology for polyethylene terephthalate-based carbom dots and its application in polyamide 66

MA Chaohui1, CUI Tongran1, BING Linhan1, ZHU Zhiguo1, WANG Rui1,2,3, WEI Jianfei1,2,3()   

  1. 1. School of Material Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
    2. Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Institute of Fashion Technology, Beijing 100029, China
    3. Beijing Engineering Research Center of Textile Nanofibers, Beijing 100029, China
  • Received:2024-11-07 Revised:2025-04-16 Published:2025-08-15 Online:2025-08-15

摘要:

为实现聚对苯二甲酸乙二醇酯(PET)的高效回收,基于聚对苯二甲酸乙二醇酯(PET)低聚物、尿素及均苯四甲酸(PMA)利用水热法高效制备PET基碳点(PET-CDs),得到较佳工艺条件:3 g PET低聚物、5 g PMA、4 g尿素、15 mL H2O,260 ℃反应18 h。此外经研究发现,装载体积对PET基碳点(PET-CDs)荧光强度影响不大,可等比例放大至5 L反应釜中进行批量制备。对批量制备的PET-CDs进行表征,结果表明:PET-CDs为表面富含羟基、氨基的球形结构,平均粒径为1.37 nm;荧光为非激发波长依赖型,最佳激发波长为410 nm,最佳发射波长为485 nm,荧光量子产率高达70.78%。应用研究表明,将PET-CDs应用于聚己二酰己二胺(PA66)的共混阻燃改性时,PET-CDs的添加质量分数为4%时,极限氧指数达到28%,试样的第1次余焰时间从188.7 s降到5.2 s。PET-CDs荧光可被Fe3+(0~10 μmol/L)特异性猝灭,因此可采用PET-CDs为荧光探针对Fe3+进行定量检测。所制备的PET-CDs还可用于防伪和指纹检测。

关键词: 碳点, 聚己二酰己二胺, 阻燃, 改性, Fe3+检测, 防伪, 指纹检测

Abstract:

Objective Carbon dots (CDs) are a sort of zero-dimensional fluorescent nanomaterials that can be widely utilized across various fields due to their excellent biocompatibility and biosecurity. Research has demonstrated that carbon dots possess significant potential as flame retardants, but the current methods for preparing carbon dots are still limited to laboratory-scale production and have not yet achieved large-scale manufacturing. This limitation poses challenges for their application in flame retardant formulations that require substantial quantities. The objective of this study is to explore a method that not only enables the efficient recycling of waste but also facilitates the flame retardant modification of polyamide 66(PA66).

Method In this study, polyethylene terephthalate (PET) carbon dots (PET-CDs) were synthesized using a hydrothermal method with PET oligomers, urea, and phosphomolybdic acid (PMA) as precursors. The optimal synthesis conditions were determined through orthogonal experiments, which allowed for the optimization of reaction temperature, reaction time, and loading volume. A series of characterization tests were conducted on the prepared carbon dots, including optical and morphological assessments. Additionally, CDs-PA66 was created by blending PET-CDs with PA66, and the thermal stability, flame retardancy, and combustion properties of CDs-PA66 were evaluated. The influence of PET-CDs on fluorescence anti-counterfeiting and fingerprint recognition was also investigated.

Results Using PET oligomer, urea, and PMA as precursors, the optimal process conditions were determined to be 3 g of PET oligomer, 5 g of PMA, 4 g of urea, and 15 mL of H2O. The reaction was conducted in a drying oven at 260 ℃ for 18 h. It is observed that the loading volume had minimal impact on the fluorescence intensity of PET carbon dots (PET-CDs), which was prepared in a 5 L kettle in equal proportions. PET-CDs were characterized using a fluorescence spectrometer, among other techniques, and the results indicate that PET-CDs exhibited no dependence on the excitation wavelength. The optimal excitation wavelength was found to be 410 nm, while the optimal emission wavelength was 485 nm, resulting in a fluorescence quantum yield of 70.78%. PET-CDs possess a spherical structure with an average particle size of 1.37 nm and a lattice spacing of 0.25 nm. The surface of the particles was rich in functional groups, including hydroxyl groups. When PET-CDs were utilized for the flame retardant modification of PA66, with an addition of 4% PET-CDs, the limiting oxygen index indicating a refractory level reached 28%. Additionally, the combustion time following the initial flame ignition decreased significantly from 188.7 s to 5.2 s. The fluorescence of PET-CDs can be specifically quenched by Fe3+, allowing for the quantitative detection of Fe3+ through the linear relationship between the degree of quenching of PET-CDs and the concentration of Fe3+ within the range of 0.00 to 10 μmol/L. Furthermore, fluorescent inks containing PET-CDs produced patterns that was invisible under natural light but become visible under ultraviolet light, demonstrating their anti-counterfeiting capabilities. Starch containing 1.5% PET-CDs can also be employed for fingerprint identification.

Conclusion PET oligomer, urea, and PMA serve as precursors with excellent fluorescence properties and a high fluorescence quantum yield. These materials can be utilized in PA66 flame retardants, fluorescent anti-counterfeiting applications, and fingerprint recognition technologies.

Key words: carbon dot, polyamide 66, flame retardant, modification, Fe3+ detection, anti-counterfeiting, fingerprint detection

中图分类号: 

  • TQ322.3

图1

PET-CDs制备条件的优化结果"

表1

正交法优化PET-CDs的因素与水平"

水平 A
PET低聚物
质量/g
B
PMA质
量/g
C
尿素质
量/g
D
去离子水
体积/mL
1 1 3 3 15
2 2 4 4 10
3 3 5 5 5

表2

正交试验结果"

编号 A B C D 荧光强
度/(105a.u.)
1 1 1 1 1 2.05
2 1 2 2 2 3.07
3 1 3 3 3 1.18
4 2 1 2 3 1.69
5 2 2 3 1 4.86
6 2 3 1 2 4.25
7 3 1 3 2 2.80
8 3 2 1 3 3.35
9 3 3 2 1 6.82
K1 2.10×105 2.18×105 3.22×105 4.58×105
K2 3.60×105 3.76×105 3.86×105 3.38×105
K3 4.32×105 4.09×105 2.95×105 2.08×105
R 2.22×105 1.90×105 9.13×104 2.50×105

图2

PET-CDs的光学特征的表征结果"

表3

金属离子和pH值对荧光强度的影响"

金属离子 I/I0 pH值 荧光强度/(105 a.u.)
Fe3+ 0.30 1 1.63
Li+ 0.99 2 1.54
Cu2+ 0.89 3 2.45
Cr3+ 0.95 4 2.99
Ca2+ 1.02 5 3.27
Ba2+ 0.99 6 3.34
Mg2+ 0.99 7 3.33
Na+ 1.00 8 3.39
Ag+ 0.97 9 3.35
K+ 1.00 10 3.36
Zn2+ 0.99 11 3.41
Cd2+ 0.99 12 2.63

图3

PET-CDs的透射电镜照片和粒径分布直方图"

图4

PET-CDs的红外光谱图和XPS表征结果"

表4

PET-CDs 及PET-CDs-PA66的DSC分析数据"

试样 T5%/℃ Tmax/℃
PET-CDs 194.76 330.39
PA66 403.70 458.21
1%-PET-CDs-PA66 395.57 461.71
2%-PET-CDs-PA66 398.88 461.84
3%-PET-CDs-PA66 397.63 462.21
4%-PET-CDs-PA66 402.03 465.42

图5

PA66和PET-CDs- PA66的DSC曲线"

图6

PA66及PET-CDs-PA66锥形量热曲线"

表5

LOI和垂直燃烧测试结果"

PET-CDs名称 LOI
值/
%
UL-94
防火
等级
t1/
s
t2/
s
是否
熔滴
熔滴是
否引燃
脱脂棉
PA66 25 NR 188.7 0
1%-PET-CDs-PA66 25 V-2 42.6 11.8
2%-PET-CDs-PA66 27 V-2 9.4 7.0
3%-PET-CDs-PA66 28 V-2 6.5 5.5
4%-PET-CDs-PA66 28 V-2 5.2 3.6

表6

PA66及PET-CDs-PA66力学拉伸数据"

样品 拉伸强度/
MPa
弹性模量/
MPa
断裂伸长
率/%
PA66 57.84 483.98 348.45
1%-PET-CDs-PA66 59.88 467.14 373.55
2%-PET-CDs-PA66 52.56 450.38 240.69
3%-PET-CDs-PA66 52.96 505.65 282.40
4%-PET-CDs-PA66 52.20 442.70 286.11

图7

Fe3+对荧光强度的影响"

图8

紫外灯(365 nm)照射下的打印图"

图9

指纹识别的效果"

[1] 王婧茹, 严娟, 许铭育, 等. 利用废弃聚对苯二甲酸乙二醇酯制备共聚酯PBCAT[J]. 高分子材料科学与工程, 2024, 40(9): 9-18.
WANG Jingru, YAN Juan, XU Mingyu, et al. Preparation of copolyester PBCAT using waste polyethylene terephthalate[J]. Polymer Materials Science and Engineering, 2024, 40(9): 9-18.
[2] 陈汇凯, 黄锦圳, 鲁国强, 等. 碳点缓蚀剂的研究进展[J]. 材料研究与应用, 2024, 18(4): 538-549.
CHEN Huikai, HUANG Jinzhen, LU Guoqiang, et al. Research progress on carbon dot corrosion inhibi-tors[J]. Materials Research and Application, 2024, 18(4): 538-549.
[3] XU Yuanlin, WANG Boyang, ZHANG Mingming, et al. Carbon dots as a potential therapeutic agent for the treatment of cancer-related anemia[J]. Advanced Materials, 2022, 34(19): e2200905-e2200905.
[4] WU Zhaofan, WANG Baojuan, NI Jiawen, et al. Green fluorescent Carbon dots with critically controlled surface states: make silk shine via feeding silkworms[J]. Nano Letters, 2024, 24(31): 9675-9682.
[5] 刘俊, 张熙荣, 熊焕明. 荧光碳点在指纹检测中的应用[J]. 发光学报, 2021, 42(8):1095-1113.
LIU Jun, ZHANG Xirong, XIONG Huanming. Application of fluorescent carbon dots in fingerprint detection[J]. Journal of Luminescence, 2021, 42(8): 1095-1113.
[6] WANG Linjie, JI Yang, CHEN Yixin, et al. Recent research progress of fluorescence biosensors based on carbon dots in early diagnosis of diseases[J]. Trends in Analytical Chemistry, 2024, 180: 117962.
[7] NGUYEN Vannghia, PHAM Hoanglong, NGUYEN Xuantruong. Recent progress in organic carbon dot-based photosensitizers for photodynamic cancer therapy[J]. Dyes and Pigments, 2024, 230: 112359-112359.
[8] 邴琳涵, 王锐, 吴雨航, 等. 聚对苯二甲酸乙二醇酯基碳点热解法制备及其在阻燃改性中的应用[J]. 纺织学报, 2024, 45(10):1-8.
doi: 10.13475/j.fzxb.20230708301
BING Linhan, WANG Rui, WU Yuhang, et al. Preparation of PET-based carbon dots by pyrolysis and its application in PET flame retardancy[J]. Journal of Textile Research, 2024, 45(10):1-8.
doi: 10.13475/j.fzxb.20230708301
[9] 王锐, 刘彦麟, 刘蕴钰, 等. 以聚对苯二甲酸乙二醇酯为前驱体的碳点制备及其应用[J]. 纺织学报, 2022, 43(2): 10-18.
WANG Rui, LIU Yanlin, LIU Yunyu, et al. Preparation and application of carbon point using polyethylene terephthalate as precursor[J]. Journal of Textile Research, 2022, 43(2): 10-18.
[10] LIU Jiahui, LI Deyu, HE Jiahui, et al. Polarity-sensitive polymer carbon dots prepared at room-temperature for monitoring the cell polarity dynamics during autophagy[J]. ACS Applied Materials & Interfaces, 2020, 12(4): 4815-4820.
[11] JIANG Yongjian, LIN Min, YANG Tong, et al. Nitrogen and phosphorus doped polymer carbon dots as a sensitive cellular mapping probe of nitrite[J]. Journal of Materials Chemistry B, 2019, 7(12): 2074-2080.
doi: 10.1039/c8tb02998a pmid: 32254811
[12] GUO Zhenli, BIAN Yanfang, ZHANG Longyan, et al. Multi-stimuli-responsive carbon dots with intrinsic photochromism and in situ radical afterglow[J]. Advanced Materials, 2024, 36(45): e2409361.
[13] QU Dan, ZHENG Min, ZHANG Ligong, et al. Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots[J]. Scientific Reports, 2014, 4(1): 5294.
[14] DING Hui, WEI Jishi, XIONG Huanming. Nitrogen and sulfur co-doped carbon dots with strong blue luminescence[J]. Nanoscale, 2014, 6(22): 13817-13823.
doi: 10.1039/c4nr04267k pmid: 25297983
[15] HOU Juan, WANG Wei, ZHOU Tianyu, et al. Synthesis and formation mechanistic investigation of nitrogen-doped carbon dots with high quantum yields and yellowish-green fluorescence[J]. Nanoscale, 2016, 8(21): 11185-11193.
doi: 10.1039/c6nr02701f pmid: 27180833
[16] WANG Min, HOU Aiying, YANG Dou, et al. Application of carbon dots synthesized with amino acid as precursor in the detection of phloroglucinol[J]. Microchemical Journal, 2024, 204: 111099.
[17] XU Quan, LIU Yao, GAO Chun, et al. Synthesis, mechanistic investigation, and application of photoluminescent sulfur and nitrogen co-doped carbon dots[J]. Journal of Materials Chemistry C, 2015, 3(38): 9885-9893.
[18] 刘举, 廖明磊, 邓德元, 等. 微硅粉改性耐热低烟无卤阻燃电缆复合材料的制备及性能研究[J]. 聚酯工业, 2024, 37(5):1-4.
LIU Ju, LIAO Minglei, DENG Deyuan, et al. Preparation and performance study of micro silicon powder modified heat resistant low smoke zero halogen flame retardant cable composite materials[J]. Polyester Industry, 2024, 37 (5): 1-4.
[19] 薛宝霞, 张铭铄, 杨色, 等. 一种碳点阻燃聚对苯二甲酸乙二醇酯的性能[J]. 高分子材料科学与工程, 2022, 38(7):53-59.
XUE Baoxia, ZHANG Mingshuo, YANG Se, et al. Properties of a carbon dot flame retardant polyethylene terephthalate[J]. Polymer Materials Science and Engineering, 2022, 38 (7): 53-59.
[20] CAI Huijuan, ZHU Yalin, XU Huilin, et al. Fabrication of fluorescent hybrid nanomaterials based on carbon dots and its applications for improving the selective detection of Fe (Ⅲ) in different matrices and cellular imaging[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021, 246: 119033.
[21] 冯瑞琪. 荧光碳点的制备及在Fe3+检测, 指纹检测和光电材料中的应用[D]. 天津: 河北工业大学, 2019: 1-65.
FENG Ruiqi. Preparation of fluorescent carbon dots and their applications in Fe3+ detection, fingerprint detection and photoelectric materials[D]. Tianjin: Hebei University of Technology, 2019: 1-65.
[1] 高闻语, 陈诚, 奚晓玮, 邓林红, 刘杨. 改性丝素蛋白纤维增强胶原基角膜修复材料的制备及其性能[J]. 纺织学报, 2025, 46(08): 1-9.
[2] 许云凯, 宋婉萌, 张旭, 刘云. 单宁酸基高效阻燃Lyocell织物的制备及其性能[J]. 纺织学报, 2025, 46(08): 145-153.
[3] 陈展毓, 俞森龙, 周家良, 朱丽萍, 周哲, 相恒学, 朱美芳. 有机膦酸改性聚乳酸织物的制备及其性能[J]. 纺织学报, 2025, 46(08): 154-163.
[4] 刘旭东, 宋政吉, 陈世昌, 陈文兴. 改性环氧树脂涂覆聚酰亚胺纤维的表面性能[J]. 纺织学报, 2025, 46(08): 18-27.
[5] 林科, 胡万锦, 王小凤, 周思婕, 夏良君, 徐卫林. 丙纶颜色构建方法的研究进展[J]. 纺织学报, 2025, 46(08): 236-244.
[6] 任天翔, 陈江炳, 房涛荣, 詹莹韬, 洪玉洁, 许志强, 徐煜东, 占海华. 聚苯硫醚薄膜的制备与改性及其应用研究进展[J]. 纺织学报, 2025, 46(08): 245-253.
[7] 贾潞, 周苏秦, 郭龙灿, 刘淑强, 张瑜. 负载MXene的棉/氨纶导电包芯纱制备及其传感性能[J]. 纺织学报, 2025, 46(07): 96-102.
[8] 丁圆, 赵云霞, 靳高岭, 杨涛, 徐静, 柯福佑, 陈烨. 阻燃聚丙烯腈长丝织物的层层自组装法制备及其性能[J]. 纺织学报, 2025, 46(06): 168-177.
[9] 林思伶, 刘赋瑶, 张成, 侯琳, 徐炎炎, 付冉迁, 樊威. 双向调温阻燃防静电纺织品的制备及其性能[J]. 纺织学报, 2025, 46(06): 38-44.
[10] 王薇, 高建南, 裴笑涵, 陆鑫, 孙银银, 吴建兵. 纤维素/甲基三甲氧基硅烷气凝胶的制备及其油水分离效能[J]. 纺织学报, 2025, 46(05): 135-142.
[11] 金汝诗, 陈万明, 刘国金, 刘承海, 戚栋明, 翟世民. 生物炭在印染废水处理中的应用研究进展[J]. 纺织学报, 2025, 46(04): 235-243.
[12] 郭洁琰, 徐颖雯, 丁放, 任学宏. 卤胺抗菌剂及其改性纤维的应用研究进展[J]. 纺织学报, 2025, 46(04): 255-263.
[13] 孙靖宇, 张建伟, 杨超, 佘希林, 刘嘉麒. 连续玄武岩纤维专用浸润剂体系的研究进展[J]. 纺织学报, 2025, 46(03): 245-255.
[14] 廖喜林, 曾媛, 刘淑萍, 李亮, 李淑静, 刘让同. 磷/氮/硅复配协效阻燃棉织物制备及其性能[J]. 纺织学报, 2025, 46(03): 151-157.
[15] 郭庆, 毛阳顺, 任亚杰, 刘济民, 王怀芳, 朱平. 基于漆酶一步催化法的羊毛织物原位染色及阻燃功能化[J]. 纺织学报, 2025, 46(02): 161-169.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!