纺织学报 ›› 2025, Vol. 46 ›› Issue (09): 188-196.doi: 10.13475/j.fzxb.20241202701

• 染整工程 • 上一篇    下一篇

一次性卫生用竹浆纤维水刺非织造材料的疏水改性及其性能

刘美1,2, 崔丽娜1, 关福旺1, 李甫3, 费鹏飞3, 马驰4, 王华平2()   

  1. 1.泉州师范学院 纺织与服装学院, 福建 泉州 362000
    2.东华大学 先进纤维材料全国重点实验室, 上海 201620
    3.太原理工大学 轻纺工程学院, 山西 太原 030600
    4.赛得利纤维集团, 福建 莆田 351153
  • 收稿日期:2024-12-16 修回日期:2025-06-12 出版日期:2025-09-15 发布日期:2025-11-12
  • 通讯作者: 王华平(1965—),男,研究员,博士。主要研究方向为化纤及纺织品绿色制造。E-mail:wanghp@dhu.edu.cn
  • 作者简介:刘美(1989—),女,讲师,博士。主要研究方向为卫生用生物质纤维及纺织品。
  • 基金资助:
    福建省中青年教师教育科研项目(JZ240048);国家自然科学基金项目(52103093);山西省应用基础研究计划面上项目(202303021221022);山西省应用基础研究计划面上项目(202303021221023)

Hydrophobic modification and performance of bamboo pulp spunlace nonwovens for disposable hygiene products

LIU Mei1,2, CUI Li'na1, GUAN Fuwang1, LI Fu3, FEI Pengfei3, MA Chi4, WANG Huaping2()   

  1. 1. College of Textiles and Apparel, Quanzhou Normal University, Quanzhou, Fujian 362000, China
    2. State Key Laboratory of Advanced Fiber Materials, Donghua University, Shanghai 201620, China
    3. College of Textile Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030600, China
    4. Sateri Fiber Co., Ltd., Putian, Fujian 351153, China
  • Received:2024-12-16 Revised:2025-06-12 Published:2025-09-15 Online:2025-11-12

摘要: 针对传统吸收性卫生用品中不可降解高分子材料引发的纤维微塑料环境污染问题,基于可再生纤维素基材的表面修饰与结构调控,开发了具有环境友好特性的新型一次性卫生用非织造材料。利用含硅氧烷基疏水官能团的3-异氰酸酯基丙基三甲氧基硅烷(ISPTMOS)与纤维素的一步氨酯化反应对竹浆纤维水刺非织造布(BCNW)表面进行疏水改性,通过引入疏水性官能团封闭羟基实现超亲水到高疏水的转变。探究了改性前后非织造布的结构与疏水性、透气性、力学性能,并对不同网孔的疏水竹浆纤维水刺非织造布样品的液体穿透性和抗返湿性进行测试。结果表明:经改性和进一步超声波水化反应后,所得竹浆纤维水刺非织造布样品的水接触角由0°提升至139.2°,同时兼具良好的透气性(透气率达3 122 mm/s);当网孔孔径为2 mm时,疏水竹浆纤维网孔非织造材料的单向导液性优良,其液体穿透时间为2.84 s,返湿量为0.012 g,滑移量为1.403 g。

关键词: 吸收性卫生用品, 可降解材料, 疏水改性, 纤维素, 单向导液, 网孔, 水刺非织造布

Abstract:

Objective Conventional absorbent hygiene products (AHP) are primarily composed of polyolefin and polyester nonwovens as wrapping materials, exhibiting features such as high consumption rates, short usage cycles, challenging recyclability, and slow degradation. These attributes render them as significant contributors to fiber-based microplastic pollution. In contrast, cellulose-based nonwoven fabrics boast advantages like softness, permeability, and inherent biodegradability. The development of novel cellulose-based nonwoven materials presents a promising approach to mitigate the persistent microplastic pollution caused by non-degradable conventional absorbent hygiene products.

However, the wrapping layer of AHP must be hydrophobic to effectively contain fluid within the absorbent core and prevent rewetting against the skin. Therefore, the highly hydrophilic nature of cellulose nonwovens necessitates hydrophobic modification for this application.

Method The surface hydrophobic modification of bamboo pulp cellulose spunlace nonwoven fabric (BCNW) was conducted via a one-step urethanation reaction using 3-isocyanatopropyltrimethoxysilane (ISPTMOS) containing siloxane-based hydrophobic functional groups. Hydrophobicity, air-permeability, and mechanical properties of the modified nonwoven fabrics were investigated before and after modification. Furthermore, liquid penetration and anti-backflow properties of BCNW-ISPTMOS samples with different mesh sizes were quantitatively evaluated.

Results Compared to pristine bamboo pulp cellulose spunlace nonwoven fabric (B-BCNW), the modified fabric exhibited a transition from superhydrophilicity to hydrophobicity. The modified sample of BCNW-ISPTMOS demonstrated a water contact angle (WCA) of 135.5°, attributable to the blocking of hydrophilic hydroxyl groups in cellulose structure by low-surface-energy silane groups and enhanced surface roughness from silane cluster formation. Notably, the micro-scale silane clusters on the surface of the ultrasonically hydrolyzed hydrophobic bamboo pulp cellulose nonwovens (BCNW-ISPTMOS(U)) were converted into micro-nano scale, with partial nano-clusters encapsulated within silane layers. This structural evolution increased both hydrophobicity and hydrophobic stability, increasing the WCA to 139.2°. Concurrently, the reduced silane cluster size during ultrasonication decreased pore blockage in nonwoven matrix while improving fabric loftiness, resulting in enhanced air-permeability of 3 122 mm/s that meets permeability requirements for hygiene product surface layers. Furthermore, application performance tests revealed that when the mesh size was 2 mm, the hydrophobic mesh nonwoven exhibited good unidirectional liquid transport properties, with liquid penetration time, wet-back and run-off amount of 2.84 s, 0.012 g, and 1.403 g, respectively.

Conclusion Bamboo pulp cellulose nonwoven materials with integrated hydrophobicity and permeability were successfully developed through a one-step urethanation reaction between ISPTMOS and cellulose hydroxyl groups. The BCNW-ISPTMOS(U) demonstrated significantly enhanced hydrophobic performance, achieving a WCA of 139.2° with stable hydrophobic efficacy. Laser perforation experiments revealed that nonwoven with 2 mm triangular pore arrays optimally balanced liquid penetration and anti-backflow performance, confirming their potential as surface layer materials for absorbent hygiene products. However, current technological implementation faces dual constraints of high production costs and localized structural alterations due to laser processing. These limitations necessitate methodological innovations in research approaches to accelerate the industrial adoption of cellulose-based nonwovens in hygiene product manufacturing.

Key words: absorbent hygiene product, biodegradable material, hydrophobic modification, cellulose, unidirectional liquid transport, mesh, spunlace nonwoven

中图分类号: 

  • TS174.3

图1

疏水竹浆纤维水刺非织造布的制备流程和化学反应式"

图2

B-BCNW, BCNW-ISPTMOS及BCNW-ISPTMOS(U)的红外谱图"

图3

B-BCNW, BCNW-ISPTMOS及BCNW-ISPTMOS(U)的EDS图像"

图4

B-BCNW和BCNW-ISPTMOS的XPS全谱图及C1s精细谱图"

图5

B-BCNW, BCNW-ISPTMOS和BCNW-ISPTMOS(U)的扫描电镜照片"

图6

B-BCNW, BCNW-ISPTMOS和BCNW-ISPTMOS(U)的静态水接触角"

图7

B-BCNW, BCNW-ISPTMOS和BCNW-ISPTMOS(U)的透气率和断裂强力以及孔径分布图"

图8

不同孔径BCNW-ISPTMOS(U)的表观形态"

表1

不同孔径BCNW-ISPTMOS(U)的液体穿透时间、返湿量和滑移量"

孔径/mm 液体穿透时间/s 返湿量/g 滑移量/g
1 7.12 0.005 7.645
2 2.84 0.012 1.403
3 2.45 0.082 0.622
[1] AJMERI J R, AJMERI C J. Developments in the use of nonwovens for disposable hygiene products[C]// Advances in technical nonwovens. Amsterdam: Elsevier, 2016: 473-496.
[2] TAKAYA C A, COOPER I, BERG M, et al. Offensive waste valorisation in the UK: assessment of the potentials for absorbent hygiene product (AHP) recycling[J]. Waste Management, 2019, 88: 56-70.
doi: S0956-053X(19)30154-0 pmid: 31079651
[3] ZHOU D W, WANG L, ZHANG F Z, et al. Feasible degradation of polyethylene terephthalate fiber-based microplastics in alkaline media with Bi2O3@N-TiO2 Z-scheme photocatalytic system[J]. Advanced Sustainable Systems, 2022, 6(5): 2100516.
doi: 10.1002/adsu.v6.5
[4] LIU Y, SHAO H, LIU J N, et al. Transport and transformation of microplastics and nanoplastics in the soil environment: a critical review[J]. Soil Use and Management, 2021, 37(2): 224-242.
doi: 10.1111/sum.v37.2
[5] CAPEZZA A J, NEWSON W R, MUNEER F, et al. Greenhouse gas emissions of biobased diapers containing chemically modified protein superabsorbents[J]. Journal of Cleaner Production, 2023, 387: 135830.
doi: 10.1016/j.jclepro.2022.135830
[6] BASHARI A, ROUHANI SHIRVAN A, SHAKERI M. Cellulose-based hydrogels for personal care products[J]. Polymers for Advanced Technologies, 2018, 29(12): 2853-2867.
doi: 10.1002/pat.v29.12
[7] GÜZDEMIR Ö, BERMUDEZ V, KANHERE S, et al. Melt-spun poly(lactic acid) fibers modified with soy fillers: toward environment-friendly disposable nonwovens[J]. Polymer Engineering & Science, 2020, 60(6): 1158-1168.
doi: 10.1002/pen.v60.6
[8] AL HOSNI A S, PITTMAN J K, ROBSON G D. Microbial degradation of four biodegradable polymers in soil and compost demonstrating polycaprolactone as an ideal compostable plastic[J]. Waste Management, 2019, 97: 105-114.
doi: S0956-053X(19)30512-4 pmid: 31447017
[9] DENG C, SEIDI F, YONG Q, et al. Antiviral/antibacterial biodegradable cellulose nonwovens as environmentally friendly and bioprotective materials with potential to minimize microplastic pollution[J]. Journal of Hazardous Materials, 2022, 424: 127391.
doi: 10.1016/j.jhazmat.2021.127391
[10] ABDUL KHALIL H P S, BHAT A H, IREANA YUSRA A F. Green composites from sustainable cellulose nanofibrils: a review[J]. Carbohydrate Polymers, 2012, 87(2): 963-979.
doi: 10.1016/j.carbpol.2011.08.078
[11] DAS D. Composite nonwovens in absorbent hygiene products[C]// Composite non-woven materials. Amsterdam: Elsevier, 2014: 74-88.
[12] 蔡露. 多全氟烷基化功能材料的制备及结构性能研究[D]. 苏州: 苏州大学, 2016:3-14.
CAI Lu. Synthesis, structure and properties research of functional materials with multi-perfluoroalkyl chains[D]. Suzhou: Soochow University, 2016:3-14.
[13] 杜姗, 魏云航, 谭宇浩, 等. 棉织物的硅溶胶/短链含氟聚丙烯酸酯复合拒水整理[J]. 纺织学报, 2023, 44(9): 153-160.
DU Shan, WEI Yunhang, TAN Yuhao, et al. Water-repellent finishing of cotton fabrics with silica Sol and short-chain fluorinated polyacrylic ester[J]. Journal of Textile Research, 2023, 44(9): 153-160.
[14] XU Q B, WANG L J, FU F Y, et al. Fabrication of fluorine-free superhydrophobic cotton fabric using fumed silica and diblock copolymer via mist modification[J]. Progress in Organic Coatings, 2020, 148: 105884.
doi: 10.1016/j.porgcoat.2020.105884
[15] GUAN F X, SONG Z P, XIN F R, et al. Preparation of hydrophobic transparent paper via using polydimethylsiloxane as transparent agent[J]. Journal of Bioresources and Bioproducts, 2020, 5(1): 37-43.
doi: 10.1016/j.jobab.2020.03.004
[16] WANG L Y, HUI L F, SU W Y. Superhydrophobic modification of nanocellulose based on an octadecylamine/dopamine system[J]. Carbohydrate Polymers, 2022, 275: 118710.
doi: 10.1016/j.carbpol.2021.118710
[17] XU L H, PAN H, WANG L M, et al. Preparation of fluorine-free superhydrophobic cotton fabric with polyacrylate/SiO2 nanocomposite[J]. Journal of Nanoscience and Nanotechnology, 2020, 20(4): 2292-2300.
doi: 10.1166/jnn.2020.17317
[18] 齐国瑞, 柯勤飞, 李祖安, 等. 纯棉水刺非织造材料的单向导水无氟整理[J]. 纺织学报, 2019, 40(7): 119-127.
QI Guorui, KE Qinfei, LI Zu'an, et al. Single-guide water non-fluorinated finishing of cotton spunlace non-woven materials[J]. Journal of Textile Research, 2019, 40(7): 119-127.
[19] 卢雪, 刘秀明, 房宽峻, 等. 锦纶/棉混纺织物的耐久无氟拒水整理[J]. 纺织学报, 2021, 42(3): 14-20.
LU Xue, LIU Xiuming, FANG Kuanjun, et al. Durable fluoride-free water-repellent finishing of polyamide/cotton blended fabric[J]. Journal of Textile Research, 2021, 42(3): 14-20.
doi: 10.1177/004051757204200104
[20] LIU W, SUN F F, JIANG L, et al. Surface structure patterning for fabricating non-fluorinated superhydrophobic cellulosic membranes[J]. ACS Applied Polymer Materials, 2019, 1(5): 1220-1229.
doi: 10.1021/acsapm.9b00215
[21] XU D X, GONG M H, LI S S, et al. Fabrication of superhydrophobic/oleophilic membranes by chemical modification of cellulose filter paper and their application trial for oil-water separation[J]. Cellulose, 2020, 27(11): 6093-6101.
doi: 10.1007/s10570-020-03261-z
[22] ZHAO J, ZHU W X, WANG X F, et al. Fluorine-free waterborne coating for environmentally friendly, robustly water-resistant, and highly breathable fibrous textiles[J]. ACS Nano, 2020, 14(1): 1045-1054.
doi: 10.1021/acsnano.9b08595 pmid: 31877025
[23] LIU M, MA C, ZHOU D W, et al. Hydrophobic, breathable cellulose nonwoven fabrics for disposable hygiene applications[J]. Carbohydrate Polymers, 2022, 288: 119367.
doi: 10.1016/j.carbpol.2022.119367
[24] 张长森, 胡志超, 王旭, 等. 硅烷偶联剂/偏高岭土基地聚合物水化热及动力学研究[J]. 材料导报, 2020, 34(14): 14105-14109.
ZHANG Changsen, HU Zhichao, WANG Xu, et al. Hydration heat and hydration kinetics of silane coupling agent/metakaolin based geopolymers[J]. Materials Reports, 2020, 34(14): 14105-14109.
[25] MENG J Q, ZHANG X, NI L, et al. Antibacterial cellulose membrane via one-step covalent immobilization of ammonium/amine groups[J]. Desalination, 2015, 359: 156-166.
doi: 10.1016/j.desal.2014.12.032
[26] 张莹, 马晓光, 易世雄, 等. 硅烷偶联剂对复合相变材料性能的影响[J]. 纺织学报, 2009, 30(3): 76-81.
ZHANG Ying, MA Xiaoguang, YI Shixiong, et al. Effect of silicane coupling agent on properties of composite phase change materials[J]. Journal of Textile Research, 2009, 30(3): 76-81.
[27] MONDAL M I H, ISLAM M K, AHMED F. Effect of silane coupling agents on cotton fibre finishing[J]. Journal of Natural Fibers, 2022, 19(13): 5451-5464.
doi: 10.1080/15440478.2021.1875382
[28] HE X H, CHEN T T, JIANG T Y, et al. Preparation and adsorption properties of magnetic hydrophobic cellulose aerogels based on refined fibers[J]. Carbohydrate Polymers, 2021, 260: 117790.
doi: 10.1016/j.carbpol.2021.117790
[29] DA SILVA B L, ABUÇAFY M P, MANAIA E B, et al. Relationship between structure and antimicrobial activity of zinc oxide nanoparticles: an overview[J]. International Journal of Nanomedicine, 2019, 14: 9395-9410.
doi: 10.2147/IJN.S216204 pmid: 31819439
[30] LI H, HE Y Q, YANG J, et al. Fabrication of food-safe superhydrophobic cellulose paper with improved moisture and air barrier properties[J]. Carbohydrate Polymers, 2019, 211: 22-30.
doi: S0144-8617(19)30120-1 pmid: 30824083
[31] THAKUR M K, GUPTA R K, THAKUR V K. Surface modification of cellulose using silane coupling agent[J]. Carbohydrate Polymers, 2014, 111: 849-855.
doi: 10.1016/j.carbpol.2014.05.041 pmid: 25037424
[32] LIU K S, YAO X, JIANG L. Recent developments in bio-inspired special wettability[J]. Chemical Society Reviews, 2010, 39(8): 3240-3255.
doi: 10.1039/b917112f pmid: 20589267
[33] LIU M, MA C, CHEN Y, et al. Cellulose nonwoven with fast liquid-discharging and anti-return properties: a microplastic-free surface layer for disposable absorbent hygiene products[J]. Chemical Engineering Journal, 2024, 490: 151291.
doi: 10.1016/j.cej.2024.151291
[34] LIU M, XIE R M, MA C, et al. Microplastic-free, single-layered functional surface with localized liquid-discharging molecular channels for disposable hygiene products[J]. Chemical Engineering Journal, 2024, 494: 153145.
doi: 10.1016/j.cej.2024.153145
[35] SHIN Y, YOO D I, MIN K. Antimicrobial finishing of polypropylene nonwoven fabric by treatment with chitosan oligomer[J]. Journal of Applied Polymer Science, 1999, 74(12): 2911-2916.
doi: 10.1002/(SICI)1097-4628(19991213)74:12<2911::AID-APP16>3.0.CO;2-2
[1] 唐春霞, 王一帆, 毛云山, 刘健, 付少海. 电磁屏蔽用纤维素基复合材料结构设计的研究进展[J]. 纺织学报, 2025, 46(09): 36-45.
[2] 刘婧瑜, 史晟, 胡晓睿, 李小燕, 张美玲, 高承永, 王华. 纤维素的溶解体系及废旧棉纤维循环再生研究进展[J]. 纺织学报, 2025, 46(07): 236-243.
[3] 余厚咏, 黄程玲, 陈毅, 高智英. 天然纤维素的多维结构演变及其功能材料研究进展[J]. 纺织学报, 2025, 46(06): 45-55.
[4] 丁振华, 袁开宇, 周敬, 叶冬冬. 面向渗透能收集的纤维素纳米流体系统研究进展[J]. 纺织学报, 2025, 46(06): 56-62.
[5] 王薇, 高建南, 裴笑涵, 陆鑫, 孙银银, 吴建兵. 纤维素/甲基三甲氧基硅烷气凝胶的制备及其油水分离效能[J]. 纺织学报, 2025, 46(05): 135-142.
[6] 李亿鸿, 蔡君怡, 诸葛晓洁, 吴东芮, 滕德英, 俞建勇, 丁彬, 李召岭. 羧基化纳米纤维素增强的柔性透明导电弹性体[J]. 纺织学报, 2025, 46(04): 11-19.
[7] 符芬, 王钰涵, 丁凯, 赵帆, 李超靖, 王璐, 曾泳春, 王富军. 纤维素基止血材料的研究进展[J]. 纺织学报, 2025, 46(04): 226-234.
[8] 李一, 张恒宇, 郭雯卓, 陈剑英, 王妮, 肖红. 阻抗阶跃渐变层结构纤维素/Ti3C2Tx气凝胶材料的制备及其吸波性能[J]. 纺织学报, 2025, 46(03): 17-26.
[9] 张帆, 程春祖, 郭翠彬, 张东, 程敏, 李婷, 徐纪刚. Lyocell纤维直接成网工艺优化与性能分析[J]. 纺织学报, 2025, 46(03): 34-40.
[10] 赵登, 张燚, 郑梦杰, 毕曙光, 冉建华. 基于液相剥离石墨烯的可见-近红外光隐身锦纶织物[J]. 纺织学报, 2025, 46(02): 153-160.
[11] 李逢春, 孙辉, 于斌, 谢有秀, 张德伟. 共价有机框架材料/粘胶水刺非织造布的制备及其染料吸附性能[J]. 纺织学报, 2025, 46(02): 170-179.
[12] 杨露, 孟家光, 陈雨青, 支超. 基于废旧纺织品的湿度响应纤维素/聚氨酯复合材料的制备及其性能[J]. 纺织学报, 2025, 46(02): 26-34.
[13] 王恩奇, 郭萌生, 胥茹柳, 陈凤祺, 樊威, 苗亚萍. 氧原子掺杂对纤维素电子态的调控[J]. 纺织学报, 2025, 46(02): 43-50.
[14] 包新军, 王兴, 张卓, 蒋辛伟, 解开放, 陈情, 何斌, 周衡书. La3+协同催化芦苇基醋酸纤维素的制备及其机制[J]. 纺织学报, 2024, 45(11): 10-20.
[15] 卢道坤, 王仕飞, 董倩, 史纳蔓, 李思琦, 干露露, 周爽, 沙莎, 张如全, 罗磊. 基于MXene的导电织物构筑及其多功能应用[J]. 纺织学报, 2024, 45(09): 137-145.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!