纺织学报 ›› 2025, Vol. 46 ›› Issue (10): 247-254.doi: 10.13475/j.fzxb.20250203502

• 综合述评 • 上一篇    下一篇

皮肤湿感觉的神经传导与脑区响应研究现状

刘楚1, 张向辉1,2(), 张昭华1,2, 牛文鑫3,4, 王诗潭3,4   

  1. 1.东华大学 服装与艺术设计学院, 上海 200051
    2.东华大学 现代服装设计与技术教育部重点试验室, 上海 200051
    3.上海市养志康复医院(上海市阳光康复中心)转化研究中心, 上海 201619
    4.同济大学 医学院康复工程与生物力学实验室, 上海 200331
  • 收稿日期:2025-02-20 修回日期:2025-06-05 出版日期:2025-10-15 发布日期:2025-10-15
  • 通讯作者: 张向辉(1978—),女,副教授,博士。主要研究方向为服装舒适性与功能。E-mail:zhangxianghui@dhu.edu.cn
  • 作者简介:刘楚(2001—),女,硕士生。主要研究方向为服装舒适性与功能。
  • 基金资助:
    上海市自然科学基金面上项目(22ZR1403100);中央高校基本科研业务费专项资金资助项目(2232025G-08)

Current research on neural transmission and brain region response of skin wet sensation

LIU Chu1, ZHANG Xianghui1,2(), ZHANG Zhaohua1,2, NIU Wenxin3,4, WANG Shitan3,4   

  1. 1. College of Fashion and Design, Donghua University, Shanghai 200051, China
    2. Key Laboratory of Clothing Design and Technology, Ministry of Education, Donghua University, Shanghai 200051, China
    3. Translational Research Center, Yangzhi Rehabilitation Hospital ( Shanghai Sunshine Rehabilitation Center), Shanghai 201619, China
    4. Laboratory of Rehabilitation Engineering and Biomechanics, Tongji University, Shanghai 200331, China
  • Received:2025-02-20 Revised:2025-06-05 Published:2025-10-15 Online:2025-10-15

摘要:

为全面阐述湿感觉的形成机制,在回顾皮肤湿感觉相关研究的基础上,重点探讨了感受器和传入神经等外周神经通路在湿感觉中的作用。通过系统梳理现有文献,阐明了湿感觉的影响因素及其感受器响应机制,尤其是热敏感神经元与机械敏感神经元在湿感觉中的协同作用。此外,还结合冷刺激与机械刺激诱发的大脑生理信号变化,探讨了不同脑区在湿感觉感知过程中的潜在响应模式,初步揭示了顶叶、额叶等区域可能参与了对湿感觉这一复合刺激的整合加工。最后,提出未来研究应进一步开展对不同神经元群体在湿刺激条件下活动特征的直接验证研究,结合神经影像学与电生理方法,以补充现有证据的局限性,为构建更为系统的湿感觉神经机制模型提供理论依据与研究基础。

关键词: 神经生理学, 热湿舒适性, 感觉皮层响应, 接触感觉, 湿感觉

Abstract:

Significance The perception of wetness is a crucial sensory experience that significantly influences human comfort and our interaction with the environment. Despite its importance, the underlying neural mechanisms of wetness perception remain not fully understood. Most existing studies focus on the peripheral neural pathways, which involve receptors and afferent neurons responsible for sensing temperature, pressure, and humidity. Understanding these mechanisms is essential for advancing fields such as sensory neuroscience, neurophysiology, and clothing design, where precise sensory feedback is critical. The value of this research lies in bridging the gap in our knowledge about how different sensory pathways collaborate to create a unified experience of wetness and how this information is integrated at the brain level. Investigating the neural circuits involved in wetness perception will offer deeper insights into sensory processing, with applications in ergonomics, healthcare, and the development of smart wearable technologies.

Progress Recent studies have increasingly emphasized the crucial role of thermoreceptors and mechanoreceptors in the perception of wetness. These peripheral sensory receptors, responsible for detecting temperature changes and tactile pressure, respectively, work in concert to transmit signals that the brain interprets as moisture on the skin. Specifically, heat-sensitive neurons respond to cooling-often associated with the evaporation of water-while mechanosensitive neurons detect the pressure and texture of stimuli contacting the skin. Research has shown that wetness perception is not mediated by a dedicated "wetness receptor" but rather emerges from the integration of cold and tactile information. This multimodal encoding occurs at the peripheral level, yet the precise mechanisms through which these different neuronal populations interact remain poorly understood.

While significant advances have been made in mapping peripheral responses to wet stimuli, notably through microneurography and psychophysical experiments, relatively less attention has been directed toward understanding how the central nervous system processes and integrates these sensory inputs. Some neuroimaging studies have proposed that the brain interprets wetness through the convergence of thermal and tactile inputs in somatosensory and higher-order integrative regions, such as the parietal and prefrontal cortices. However, empirical evidence remains scarce, and the exact neural circuits involved in wetness perception are yet to be clearly delineated. Theoretical models suggest a collaborative encoding process between thermosensitive and mechanosensitive pathways, but this hypothesis requires further validation through functional neuroimaging and electrophysiological studies. Bridging this knowledge gap is essential for advancing our understanding of multisensory integration in somatic perception and may have important implications for neurorehabilitation and tactile interface design.

Conclusion and Prospect This review highlights a growing consensus that wetness perception arises from the integration of multiple sensory pathways, primarily involving thermoreceptors and mechanoreceptors that encode temperature changes and tactile stimuli. While peripheral mechanisms of wetness perception have been relatively well characterized, significant gaps remain in our understanding of how the central nervous system processes and integrates these multisensory signals. In particular, it remains unclear how the brain transforms separate inputs, such as cooling sensations and mechanical deformation of the skin, into a unified perception of wetness. To address these knowledge gaps, future research should prioritize the use of advanced neuroimaging techniques, such as functional near-infrared spectroscopy (fNIRS), functional magnetic resonance imaging (fMRI), and electroencephalography (EEG), to monitor cortical responses during wetness-related stimulation. These approaches can provide insights into the temporal dynamics and spatial localization of neural activity associated with wetness perception. Special attention should be given to the roles of the primary and secondary somatosensory cortex, as well as the insular cortex, which are known to be involved in the integration of sensory inputs and in the perception of bodily states. Moreover, identifying the specific neural circuits and characterizing the behavior of individual neuron populations involved in wetness processing will be essential for constructing a comprehensive model of multisensory integration. A deeper understanding of these mechanisms could inform the development of innovative tactile interfaces, improve textile design for thermal and moisture comfort, and enhance user experience in wearable technology.

Key words: neurophysiology, thermal and moisture comfort, somatosensory cortical response, tactile sensation, wetness perception

中图分类号: 

  • TS941.16

表1

Aβ传入纤维及其机械感受器"

传入纤
维类型
感受器 响应感觉 分布位置
快适应I型 梅斯纳
小体
感知轻触和低频振动,能够快速对机械刺激做出反应,但当刺激持续时会迅速适应,停止发送信号 皮肤的表皮和真皮交界处
快适应II型 帕奇尼
小体
感知高频振动,传递速度更快,能检测深部的机械变化和压力变化 皮下组织、关节周围、肌腱和骨膜中
慢适应I型 梅克尔
细胞盘
感知持续的压力和形变,特别是对皮肤表面的精细触觉具有高敏感性 表皮层的基底部
慢适应II型 鲁菲尼
末梢
感知皮肤的深层变形,对皮肤的拉伸和剪切力具有高敏感性 皮肤的真皮深层和皮下组织中
[1] VALENZA A, BIANCO A, FILINGERI D. Thermosensory mapping of skin wetness sensitivity across the body of young males and females at rest and following maximal incremental running[J]. The Journal of Physiology, 2019, 597(13): 3315-3332.
doi: 10.1113/JP277928 pmid: 31093981
[2] 何满堂, 郭俊泽, 王黎明, 等. 纳米纤维包芯纱截面方向热湿耦合传递过程的模拟[J]. 纺织学报, 2024, 45(8): 142-149.
HE Mantang, GUO Junze, WANG Liming, et al. Simulation of coupled thermal-moisture transfer in cross-section of nanofiber core-spun yarns[J]. Journal of Textile Research, 2024, 45(8): 142-149.
[3] 李美泽, 方青青, 齐业雄. 芳纶、海藻纤维复合高隔热针织面料开发[J]. 针织工业, 2024(8): 18-21.
LI Meize, FANG Qingqing, QI Yexiong. Development of aramid and seaweed fiber knitted composite fabric with high thermal insulation performance[J]. Knitting Industries, 2024(8): 18-21.
[4] 昌康琪, 罗梦颖, 赵青华, 等. 辐射降温聚烯烃纳米纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(7): 24-30.
CHANG Kangqi, LUO Mengying, ZHAO Qinghua, et al. Preparation and properties of radiation cooling polyolefin nanofiber membrane[J]. Journal of Textile Research, 2024, 45(7): 24-30.
[5] ZU Y, HU J, YANG M, et al. Electrochemical power generation humidity sensor based on WS2 nano-flakes[J]. Sensors and Actuators B: Chemical, 2024.DOI: 10.1016/j.snb.2024.135325.
[6] BUOITE STELLA A, FILINGERI D, GARASCIA G, et al. Skin wetness sensitivity across body sites commonly affected by pain in people with migraine[J]. Headache: The Journal of Head and Face Pain, 2022, 62(6): 737-747.
doi: 10.1111/head.v62.6
[7] EYAREFE O D, OLOGUNAGBA F M, EMIKPE B O. Wound healing potential of natural honey in diabetic and non-diabetic wistar rats[J]. African Journal of Biomedical Research, 2014, 17(1): 15-21.
[8] ÖĞÜLMÜŞ DEMIRCAN F, YÜCEDAĞ İ, TOZ M. A novel mathematical model including the wetness parameter as a variable for prevention of pressure ulcers[J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2022, 236(3): 427-437.
doi: 10.1177/09544119211048557
[9] SHIBAHARA M, SATO K. Illusion of wetness by dynamic touch[J]. IEEE Transactions on Haptics, 2019, 12(4): 533-541.
doi: 10.1109/TOH.2019.2919575 pmid: 31150346
[10] PLOUMITSAKOU M, MUHEIM J, FELOUZIS A, et al. Remapping wetness perception in upper limb amputees[J]. Advanced Intelligent Systems, 2024. DOI: 10.1002/aisy.202300512.
[11] FILINGERI D, FOURNET D, HODDER S, et al. Why wet feels wet? a neurophysiological model of human cutaneous wetness sensitivity[J]. Journal of Neurophysiology, 2014, 112(6): 1457-1469.
doi: 10.1152/jn.00120.2014 pmid: 24944222
[12] 唐香宁, 张昭华, 李俊, 等. 人体皮肤湿感觉的研究进展[J]. 纺织学报, 2017, 38(9): 174-180.
TANG Xiangning, ZHANG Zhaohua, LI Jun, et al. Research progress of human skin wetness perception[J]. Journal of Textile Research, 2017, 38(9): 174-180.
[13] BERGMANN TIEST W M, KOSTERS N D, KAPPERS A M L, et al. Haptic perception of wetness[J]. Acta Psychologica, 2012, 141(2): 159-163.
doi: 10.1016/j.actpsy.2012.07.014 pmid: 22964056
[14] FILINGERI D, REDORTIER B, HODDER S, et al. Warm temperature stimulus suppresses the perception of skin wetness during initial contact with a wet surface[J]. Skin Research and Technology, 2015, 21(1): 9-14.
doi: 10.1111/srt.12148 pmid: 24612108
[15] ZHANG Z, SUN C, ZHANG X. The effect of the heat transfer mechanism on the psychophysical assessment of moisture sensation in fabrics[J]. Textile Research Journal, 2022, 92(19/20): 3629-3640.
doi: 10.1177/00405175221080095
[16] KATO I, MASUDA Y, NAGASHIMA K. Characteristics of wet perception during the static touch of moist paper by the index fingertip alongside thermal stimulus application[J]. Physiology & Behavior, 2023. DOI: 10.1016/j.physbeh.2022.114033.
[17] ANDRÉ T. Fingertip skin as an optimal interface to manipulate objects: the role of moisture[D]. Louvain-la-Neuve: UCL-UniversitÉ Catholique de Louvain, 2010: 42-44.
[18] RACCUGLIA M, HODDER S, HAVENITH G. Human wetness perception in relation to textile water absorption parameters under static skin contact[J]. Textile Research Journal, 2017, 87(20): 2449-2463.
doi: 10.1177/0040517516671127
[19] JIANG R, WANG Y. Study of the Human stickiness perception of wet fabric on the volar forearm via two contact modes: friction and adhesion-separation[J]. Perception, 2020, 49(12): 1311-1332.
doi: 10.1177/0301006620976992 pmid: 33302776
[20] FILINGERI D, FOURNET D, HODDER S, et al. Tactile cues significantly modulate the perception of sweat-induced skin wetness independently of the level of physical skin wetness[J]. Journal of Neurophysiology, 2015, 113(10): 3462-3473.
doi: 10.1152/jn.00141.2015 pmid: 25878153
[21] ZHANG Z, TANG X, WANG Y, et al. Effect of fiber type, water content, and velocity on wetness perception by the volar forearm test: threshold detection test[J]. Perception, 2020, 49(2): 139-154.
doi: 10.1177/0301006619899803 pmid: 32050861
[22] ZHANG Z, TANG X, LI J, et al. The effect of dynamic friction with wet fabrics on skin wetness perception[J]. International Journal of Occupational Safety and Ergonomics, 2020, 26(2): 370-383.
doi: 10.1080/10803548.2018.1453023 pmid: 29537944
[23] LITHFOUS S, TROCMET L, PEBAYLE T, et al. Investigating cold Aδ fibers in the 0-40 ℃ temperature range: a quantitative sensory testing and evoked potentials study[J]. Clinical Neurophysiology, 2022, 134: 81-87.
doi: 10.1016/j.clinph.2021.11.076
[24] LIAO X. Neuropsychological mechanisms of fabric touch sensations[D]. Hong Kong: The Hong Kong Polytechnic University, 2015: 294-296.
[25] ACKERLEY R, OLAUSSON H, WESSBERG J, et al. Wetness perception across body sites[J]. Neuroscience Letters, 2012, 522(1): 73-77.
doi: 10.1016/j.neulet.2012.06.020 pmid: 22710006
[26] DESPRÉS O, MAMINO E, PEBAYLE T, et al. An electronical stimulator for quantitative sensory testing and evoked potential analysis of tactile Aβ nerve fibers[J]. Clinical Neurophysiology, 2023, 150: 184-193.
doi: 10.1016/j.clinph.2023.03.014 pmid: 37075683
[27] ABAGNALE S, PANICO F, SAGLIANO L, et al. Pleasant touch: behavioural and hemodynamic responses to a protocol for systematic assessment of tactile stimulation[J]. Cortex, 2025, 184: 236-249.
doi: 10.1016/j.cortex.2025.01.003 pmid: 39908706
[28] ETZI R, SPENCE C, GALLACE A. Textures that we like to touch: an experimental study of aesthetic preferences for tactile stimuli[J]. Consciousness and Cognition, 2014, 29: 178-188.
doi: 10.1016/j.concog.2014.08.011 pmid: 25286127
[29] MARSHALL A, ACKERLEY R. P990: uncovering the tactile aspects in sensing drops of water[J]. Clinical Neurophysiology, 2014. DOI: 10.1016/S1388-2457(14)51026-7.
[30] LI S, LI B, GAO L, et al. Humidity response in Drosophila olfactory sensory neurons requires the mechanosensitive channel TMEM63[J]. Nature Communications, 2022. DOI: 10.1038/s41467-022-31253-z
[31] RUSSELL J, VIDAL-GADEA A G, MAKAY A, et al. Humidity sensation requires both mechanosensory and thermosensory pathways in Caenorhabditis elegans[J]. Proceedings of the National Academy of Sciences, 2014, 111(22): 8269-8274.
doi: 10.1073/pnas.1322512111
[32] GEISLER W S, KERSTEN D. Illusions, perception and Bayes[J]. Nature Neuroscience, 2002, 5(6): 508-510.
pmid: 12037517
[33] OTTEN M, SETH A K, PINTO Y. A social Bayesian brain: how social knowledge can shape visual perception[J]. Brain and Cognition, 2017, 112: 69-77.
doi: S0278-2626(16)30059-8 pmid: 27221986
[34] HAGGARD P, IANNETTI G D, LONGO M R. Spatial sensory organization and body representation in pain perception[J]. Current Biology, 2013, 23(4): 164-176.
doi: 10.1016/j.cub.2013.01.047 pmid: 23428330
[35] KING M, CARNAHAN H. Revisiting the brain activity associated with innocuous and noxious cold expo-sure[J]. Neuroscience & Biobehavioral Reviews, 2019, 104: 197-208.
doi: 10.1016/j.neubiorev.2019.06.021
[36] GARKAVENKO V V, MAN'KOVSKAYA O P, OMEL'CHENKO T G, et al. Effect of cold stimulation of the arm fingers on the spectral/coherent EEG characteristics in humans[J]. Neurophysiology, 2008, 40(3): 228-230.
doi: 10.1007/s11062-008-9041-4
[37] SHAROONI P M, MAEREFAT M, ZOLFAGHARI S A, et al. A feasibility study on using fNIRS brain signals to recognize personal thermal sensation and thermal comfort conditions[J]. Journal of Exposure Science & Environmental Epidemiology, 2024, 34(6): 952-961.
[38] MERRICK C. The influence of thermal, tactile and visual modalities on human skin wetness perception[D]. Loughborough: Loughborough University, 2021: 116-120.
[39] YUAN J, YU W, CHEN K, et al. A potential new fabric evaluation approach by capturing brain perception under fabric contact pressure[J]. Textile Research Journal, 2019, 89(16): 3312-3325.
doi: 10.1177/0040517518811939
[40] TANG W, ZHANG S, YU C, et al. Tactile perception of textile fabrics based on friction and brain activa-tion[J]. Friction, 2023, 11(7): 1320-1333.
doi: 10.1007/s40544-022-0679-5
[41] TALEEI T, NAZEM-ZADEH M R, AMIRI M, et al. EEG-based functional connectivity for tactile roughness discrimination[J]. Cognitive Neurodynamics, 2023, 17(4): 921-940.
doi: 10.1007/s11571-022-09876-1 pmid: 37522039
[1] 许微辉, 朱婷婷, 万爱兰, 马丕波. 基于仿生结构的抗菌无缝瑜伽服研发及其热湿舒适性[J]. 纺织学报, 2025, 46(10): 187-196.
[2] 罗玉玲, 杨喜竹, 王星岚, 郑晓慧, 赵胜男, 常素芹. 以相变包为冷源的冷却服研究进展[J]. 纺织学报, 2025, 46(07): 253-261.
[3] 朱梦慧, 葛美彤, 董智佳, 丛洪莲, 马丕波. 纬编双面羊毛/涤纶交织物的结构与热湿性能评价[J]. 纺织学报, 2025, 46(05): 179-185.
[4] 杨琪, 周晓钰, 季静, 戴宏钦. 化学防护服内湿度调节装置的设计与性能评价[J]. 纺织学报, 2025, 46(05): 262-269.
[5] 巫晓雯, 方蕾妹, 江昆, 丛洪莲. 基于热湿舒适性的横编全成形运动内衣的分区设计[J]. 纺织学报, 2024, 45(12): 172-179.
[6] 张昭华, 羊悦, 倪军, 张旭. 人体对干燥和含水织物的接触感知对比研究[J]. 纺织学报, 2024, 45(11): 193-198.
[7] 谭轶丹, 张昭华, 李诗涵. 不同感官模态对织物湿感觉的影响[J]. 纺织学报, 2024, 45(06): 82-88.
[8] 王兆芳, 张辉, 丁波, 张淼. 文胸罩杯透湿率测定新方法[J]. 纺织学报, 2024, 45(01): 176-184.
[9] 姚晨曦, 万爱兰. 聚对苯二甲酸丁二醇酯/聚对苯二甲酸乙二醇酯纬编运动T恤面料的热湿舒适性[J]. 纺织学报, 2024, 45(01): 90-98.
[10] 王兆芳, 丁波, 张辉, 陈思璘. 青年女性胸部出汗分布和出汗率的测定[J]. 纺织学报, 2023, 44(12): 145-152.
[11] 王予涛, 丛洪莲, 顾洪阳. 纬编成形护膝结构设计及其热湿舒适性[J]. 纺织学报, 2023, 44(10): 68-74.
[12] 丁雪婷, 王建萍, 潘婷, 姚晓凤, 袁鲁宁. 仿蜻蜓翅膀结构的冬季针织面料研发及其性能[J]. 纺织学报, 2023, 44(09): 75-83.
[13] 赵辰, 王敏, 李俊. 个体降温服优化设计对其降温效果影响的研究进展[J]. 纺织学报, 2023, 44(09): 243-250.
[14] 陈佳慧, 梅涛, 赵青华, 尤海宁, 王雯雯, 王栋. 热湿舒适性智能织物的研究进展[J]. 纺织学报, 2023, 44(01): 30-37.
[15] 牛梦雨, 潘姝雯, 戴宏钦, 吕凯敏. 医用防护服的热湿舒适性与人体疲劳度的关系[J]. 纺织学报, 2021, 42(07): 144-150.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!