纺织学报 ›› 2025, Vol. 46 ›› Issue (10): 237-246.doi: 10.13475/j.fzxb.20250301402

• 综合述评 • 上一篇    下一篇

生物降解聚合物非织造材料的降解性能及标准体系研究进展

刘琳1, 夏菲菲2, 徐晓禹3, 赵柳涛4, 叶翔宇5, 俞森龙6, 邵钰7, 吴跃7, 张兴宏8, 朱斐超1,8()   

  1. 1.浙江理工大学 生物基纤维材料全国重点实验室, 浙江 杭州 310018
    2.宜可新材料(台州)有限公司, 浙江 台州 317200
    3.新疆润弘医卫新材料有限公司, 新疆 阿拉尔 843300
    4.浙江王金非织造布有限公司, 浙江 湖州 313100
    5.浙江省质量科学研究院, 浙江 杭州 310018
    6.东华大学 材料科学与工程学院, 上海 201620
    7.杭州千芝雅卫生用品有限公司, 浙江 杭州 311500
    8.浙江大学 高分子科学与工程学系, 浙江 杭州 310030
  • 收稿日期:2025-03-10 修回日期:2025-06-24 出版日期:2025-10-15 发布日期:2025-10-15
  • 通讯作者: 朱斐超(1988—),男,副教授,博士。主要研究方向为产业用非织造材料制备与开发。E-mail:zhufeichao@zstu.edu.cn
  • 作者简介:刘琳(2005—),女,硕士生。主要研究方向为生物基/可降解非织造材料。
  • 基金资助:
    国家自然科学基金项目(52203050);浙江省自然科学基金项目(LQ21E030013);浙江省科技计划项目(2023C01197)

Research progress in biodegradable polymer nonwoven materials and standard system

LIU Lin1, XIA Feifei2, XU Xiaoyu3, ZHAO Liutao4, YE Xiangyu5, YU Senlong6, SHAO Yu7, WU Yue7, ZHANG Xinghong8, ZHU Feichao1,8()   

  1. 1. State Key Laboratory of Bio-Based Fiber Materials, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Eco New Materials (Taizhou) Co., Ltd., Taizhou, Zhejiang 317200, China
    3. Xinjiang Runhong Medical and Health New Materials Co., Ltd., Aral, Xinjiang 843300, China
    4. Zhejiang Wangjin Nonwoven Fabric Co., Ltd., Huzhou, Zhejiang 313100, China
    5. Zhejiang Institute of Quality Sciences, Hangzhou, Zhejiang 310018, China
    6. College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
    7. Hangzhou Qianzhiya Sanitary Products Co., Ltd., Hangzhou, Zhejiang 311500, China
    8. Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310030, China
  • Received:2025-03-10 Revised:2025-06-24 Published:2025-10-15 Online:2025-10-15

摘要:

生物降解聚合物非织造材料因其良好的生物相容性与可降解性,成为绿色低碳纺织材料的重要发展方向。然而,其降解行为受多种因素影响,评价体系尚不统一。为此,聚焦聚乳酸(PLA)、聚乙烯醇(PVA)、聚羟基脂肪酸酯(PHA)、聚己内酯(PCL)、聚对苯二甲酸-己二酸丁二醇酯(PBAT)、聚对苯二甲酸-共-丁二酸丁二醇酯(PBST)等材料,综述其通过纺黏、熔喷、针刺、水刺等工艺制备的非织造材料在土壤、堆肥、海水、污泥等环境中的生物降解机制及降解性能,包括主链断裂、侧基氧化等路径,以及脂肪酶、蛋白酶、角质酶等关键酶的作用。总结了影响材料降解速率的内部因素(分子结构、结晶度、分子量、侧基类型等)及外部因素(温/湿度、pH值、氧气、微生物群落和加工方式等)。旨在系统梳理生物降解非织造材料的降解性能与机制,分析影响因素及国内外标准现状,为其规范化应用与标准体系构建提供理论支持。

关键词: 非织造材料, 生物降解, 降解机制, 降解标准, 聚乳酸

Abstract:

Significance Biodegradable polymer nonwoven fabrics, with their excellent biocompatibility and environmental degradability, are considered a prime example of green and low-carbon textile materials. In the context of growing global environmental awareness, such materials have found widespread application across numerous fields, including healthcare (e.g., surgical gowns, dressings, disinfectant wipes), daily consumer goods (e.g., eco-friendly shopping bags, cleaning cloths), transportation engineering (e.g., interior trim, soundproofing materials), and modern agriculture (e.g., agricultural films, seedling bags, protective coverings). Their core value lies in their ability to absorb and utilise energy and nutrients from the environment, ultimately decomposing into water, carbon dioxide, or methane, as well as biomass, through microbial action, thereby returning to the natural cycle. Compared to traditional petroleum-based plastics, biodegradable non-woven fabrics offer significant advantages, including sustainability, high efficiency, ecological safety, effective degradation of polymers, and an extremely broad range of applications. Therefore, studying their degradation performance, degradation mechanisms, and influencing factors provides support for promoting the widespread application of biodegradable polymer nonwoven materials in the textile industry, thereby fostering the standardisation and sustainable development of the biodegradable polymer nonwoven materials industry.

Progress Research on the degradation behaviour of biodegradable polymer nonwoven materials has shifted from single-factor environmental assessment to the analysis of multi-factor synergistic mechanisms. Focusing on biodegradable materials such as polylactic acid(PLA), polyvinyl alcohol(PVA), polyhydroxyalkanoates(PHA), polycaprolactone(PCL), poly(butylene terephthalate-co-adipate)(PBAT), and poly(butylene terephthalate-co-succinate)(PBST), researchers have prepared nonwoven materials using processes such as spunbonding and meltblowing, systematically revealing their degradation pathways in environments such as soil, compost, and seawater. PLA/PCL degradation relies on ester bond hydrolysis (dominated by lipases), PVA degrades through side-chain oxidation (catalysed by dehydrogenase), while PHA, due to its natural aliphatic structure, is easily directly mineralised by microorganisms. Degradation rates are synergistically regulated by internal and external factors. Internally, low crystallinity (e.g., PHA amorphous regions >70%), linear molecular chains (PVA hydrolysis >88%), and copolymer disorder (PBAT aromatic units <60 mol%) significantly accelerate degradation, and in the external environment, thermophilic temperatures (composting at 58-80 ℃), alkaline pH (PLA degradation rate increased to 96%), rich microbial communities (CO2 release >350 mg at bacterial suspension concentration of 108 CFU), and non woven processes (electrospun high specific surface area > meltblown > spunbond) are key promoting factors. Recent breakthroughs have focused on the establishment of degradation standard systems. International standards (ISO 14855, ISO 19679) and national standards (GB/T 19277, GB/T 40611) have covered scenarios such as aqueous culture, industrial composting, and marine deposition, with clear core evaluation indicators including biodegradation rate (aerobic environment >90%), disintegration rate (12 weeks > 90%), and ecological toxicity (OECD 208) as core evaluation criteria. However, the absence of household composting standards (only ISO 21701 as a reference) and insufficient marine field verification (field cycles > 2 years) remain bottlenecks for industrialisation. In the future, it will be necessary to integrate process-structure-environment parameter quantitative models to promote the implementation of a closed-loop degradation certification system.

Conclusion and Prospect To significantly enhance the degradation efficiency of biodegradable polymer nonwoven materials, researchers have explored their specific compatibility with different categories of degradative enzymes (such as proteases, lipases, and cellulases) and regulated parameters of the degradation environment such as temperature, humidity, pH value, and microbial community composition. Ideal biodegradable nonwoven materials must not only meet the diverse application requirements of medical, hygiene, agricultural, and packaging sectors but also ensure efficient and controlled return to the natural environment at the end of their lifecycle. Currently, China urgently needs to continuously improve the evaluation and management system for biodegradable materials to scientifically guide the industry in achieving the optimal balance between material performance and environmental friendliness. However, high production costs remain the primary bottleneck constraining large-scale application. Therefore, efficiently separating and extracting low-cost, high-performance biodegradable polymer raw materials from natural resources has become the industry's top priority for breakthroughs. Meanwhile, the degradation rates of existing materials under complex natural conditions remain insufficient, with significant room for improvement. This necessitates the industry actively exploring innovative production processes to achieve efficient and scalable production while simultaneously enhancing product uniformity and overall quality. To this end, researchers need to conduct more in-depth analyses of the microscopic mechanisms of biodegradation in different environments, establish quantitative predictive models linking material structure, degradation kinetics, and environmental factors, and use these as a foundation to collaboratively develop a comprehensive, authoritative, and unified product certification system, scientifically rigorous degradation evaluation standards, and rapid and efficient degradation testing methods covering the entire lifecycle of the materials. Achieving a complete closed-loop management system for biodegradable non woven fabrics from "raw material acquisition-product manufacturing-consumer use-waste degradation-resource regeneration" will truly realise the harmless and resource-efficient disposal of environmental waste.

Key words: nonwoven material, biodegradability, degradation mechanism, degradation standard, polylactic acid

中图分类号: 

  • TS176

图1

生物降解聚合物非织造材料的降解过程"

图2

影响生物降解的因素"

表1

降解塑料在水性培养液中的降解性能测试标准"

降解环境 降解条件 国内降解标准 国外降解标准
水性培养液(模拟河流、湖泊等淡水环境) 需氧 GB/T 19276.1—2003《水性培养液中材料最终需氧生物分解能力的测定 采用测定密闭呼吸计中需氧量的方法》 ISO 14851:2019《水介质中塑料材料极限需氧生物降解性的测定-在密闭呼吸仪中通过测定需氧量的方法》
ISO 14852:2021《在水介质中测定塑料材料的最终需氧生物降解性-通过分析逸出的二氧化碳的方法》
ISO 9408:1999《水质-通过测定密闭呼吸计中的需氧量来评价水介质中有机物的最终好氧生物降解性》
ISO 10634:2018《水质-难溶于水的有机物的制备和处理,用于后续评估其在水介质中的生物降解性》
ISO/TR 15462:2006《水质可生化性试验方法的选择》
GB/T 19276.2—2003《水性培养液中材料最终需氧生物分解能力的测定 采用测定释放的二氧化碳的方法》
厌氧 GB/T 32106—2015《塑料 在水性培养液中最终厌氧生物分解能力的测定 通过测量生物气体产物的方法》 ISO 14853:2016《塑料-测定水体系中塑料材料的最终厌氧生物降解-通过测量沼气产量的方法》
需氧/
厌氧
ISO 11348-3:2007《水质-水样对费氏弧菌(发光细菌检测)发光抑制效果的测定 第3部分:使用冻干细菌法》

表2

降解塑料在海洋环境下降解性能测试标准"

降解环境 降解条件 国内降解标准 国外降解标准
沙质沉积物界面 需氧 GB/T 40611—2021《塑料 海水沙质沉积物界面非漂浮塑料材料最终需氧生物分解能力的测定 通过测定密闭呼吸计内耗氧量的方法》
GB/T 43287—2023《塑料 海水沙质沉积物界面非漂浮塑料材料最终需氧生物分解能力的测定 通过测定释放二氧化碳的方法》
ISO 19679:2020《塑料-测定海水/沉积物界面非漂浮塑料材料的好氧生物降解-通过分析逸出的二氧化碳的方法》
海洋沉积物 需氧 GB/T 40367—2021《塑料 暴露于海洋沉积物中非漂浮材料最终需氧生物分解能力的测定 通过分析释放的二氧化碳的方法》
GB/T 43287—2023《塑料 在实际野外条件海洋环境中塑料材料崩解度的测定》
ISO 23977-1:2020《塑料-暴露于海水中塑料材料好氧生物降解的测定 第1部分:通过分析演化二氧化碳的方法》
ISO 23977-2:2020《塑料-暴露于海水中塑料材料好氧生物降解的测定 第2部分:在密闭呼吸测定仪中测定需氧量的方法》
ISO 22404:2019《塑料-暴露于海洋沉积物中的非漂浮物质的好氧生物降解的测定 通过分析演化二氧化碳的方法》
ISO 22766:2020《塑料-真实野外条件下海洋环境中塑料材料崩解程度的测定》
实验室条件 需氧 ASTM D6691—2017《测定海洋环境中塑料材料好氧生物降解的标准试验方法,由确定的微生物菌群或天然海水接种物》

表3

降解塑料在污泥消化环境下降解性能测试标准"

降解环境 降解条件 国内降解标准 国外降解标准
污泥消化
(模拟装置)
厌氧 GB/T 38737—2020《塑料 受控污泥消化系统中材料最终厌氧生物分解率测定 采用测量释放生物气体的方法》 ISO 13975:2019《塑料-受控沼液消化系统中塑料材料最终厌氧生物降解的测定》

表4

降解塑料在堆肥条件下降解性能测试标准"

降解环境 降解条件 国内降解标准 国外降解标准
工业堆肥 需氧 GB/T 19277.1—2011《受控堆肥条件下材料最终需氧生物分解能力的测定 采用测定释放的二氧化碳的方法 第1部分:通用方法》
GB/T 19277.2—2013《受控堆肥条件下材料最终需氧生物分解能力的测定 采用测定释放的二氧化碳的方法 第2部分:用重量分析法测定实验室条件下二氧化碳的释放量》
GB/T 19811—2005《在定义堆肥化中试条件下 塑料材料崩解程度的测定》
ISO 14855-1:2012《受控堆肥条件下塑料材料最终好氧生物降解性的测定-通过分析逸出二氧化碳的方法 第1部分:通用方法》
ISO 14855-2:2018《受控堆肥条件下塑料材料最终好氧生物降解性的测定-通过分析产生的二氧化碳的方法 第2部分:实验室规模试验中产生的二氧化碳的重量测量》
ASTM D5338—2015 (2021)《结合高温温度,标准试验方法用于测定塑料材料在受控堆肥条件下的好氧生物降解》
ISO 16929:2021《塑料-在受控堆肥条件下塑料材料崩解程度的测定 中试规模测试》
家庭堆肥 需氧 GB/T 40553—2021《塑料 适合家庭堆肥塑料技术规范》
GB/T 19811—2005《在定义堆肥化中试条件下 塑料材料崩解程度的测定》
ISO 21701:2019《纺织品-纺织材料加速水解和在控制水解产物堆肥条件下生物降解的试验方法》
ISO 16929:2021《塑料-中试试验中规定堆肥条件下塑料材料崩解程度的测定》
EN 13432:2000《包装-通过堆肥和生物降解可回收包装的要求-包装最终验收的试验方案和评价标准》
ISO 17088:2021《塑料-有机回收-可堆肥塑料规范》
实验室堆肥 需氧 GB/T 41639—2022《塑料 在实验室规模模拟堆肥化条件下塑料材料崩解率的测定》 ISO 20200—2023《塑料-在实验室规模试验中测定堆肥条件下塑料材料的崩解程度》
ISO 5148:2022《塑料-中温实验室测试条件下固体塑料材料特定好氧生物降解速率和消失时间(DT50)的测定》
土壤 需氧 GB/T 22047—2008《土壤中塑料材料最终需氧生物分解能力的测定》 ISO 11266:1994《土壤质量-好氧条件下土壤中有机化学品生物降解的实验室测试指南》
ISO 17556:2019《塑料-通过测量呼吸计中的需氧量或产生的二氧化碳量来确定塑料材料在土壤中的最终有氧生物降解性》
ASTM D5988—2018 (2025)《测定土壤中塑料材料好氧生物降解的标准试验方法》
厌氧 ISO 15473:2002《土壤质量-厌氧条件下土壤中有机化学品生物降解的实验室测试指南》
[1] ZAABA N F, JAAFAR M. A review on degradation mechanisms of polylactic acid: hydrolytic, photodegradative, microbial, and enzymatic degrada-tion[J]. Polymer Engineering & Science, 2020, 60(9): 2061-2075.
doi: 10.1002/pen.v60.9
[2] MOSHOOD T D, NAWANIR G, MAHMUD F, et al. Sustainability of biodegradable plastics: new problem or solution to solve the global plastic pollution?[J]. Current Research in Green and Sustainable Chemistry, 2022, 5: 100273.
doi: 10.1016/j.crgsc.2022.100273
[3] LYU L, BAGCHI M, NG K T W, et al. The degradation of polylactic acid face mask components in different environments[J]. Journal of Environmental Management, 2024, 370: 122731.
doi: 10.1016/j.jenvman.2024.122731
[4] 金琰, 蔡凡凡, 王立功, 等. 生物可降解塑料在不同环境条件下的降解研究进展[J]. 生物工程学报, 2022, 38(5): 1784-1808.
JIN Yan, CAI Fanfan, WANG Ligong, et al. Research progress on the degradation of biodegradable plastics under different environmental conditions[J]. Chinese Journal of Bioengineering, 2022, 38 (5): 1784-1808.
[5] JIA H, ZHANG M, WENG Y, et al. Degradation of poly (butylene adipate-co-terephthalate) by Stenotrophomonas sp. YCJ1 isolated from farmland soil[J]. Journal of Environmental Sciences, 2021, 103: 50-58.
doi: 10.1016/j.jes.2020.10.001
[6] LIM B K H, SAN Thian E. Biodegradation of polymers in managing plastic waste: a review[J]. Science of the Total Environment, 2022, 813: 151880.
doi: 10.1016/j.scitotenv.2021.151880
[7] GHOSH S K, PAL S, RAY S. Study of microbes having potentiality for biodegradation of plastics[J]. Environmental Science and Pollution Research, 2013, 20: 4339-4355.
doi: 10.1007/s11356-013-1706-x
[8] HAIDER T P, VÖLKER C, KRAMM J, et al. Plastics of the future? the impact of biodegradable polymers on the environment and on society[J]. Angewandte Chemie International Edition, 2019, 58(1): 50-62.
doi: 10.1002/anie.v58.1
[9] SATTI S M, SHAH A A. Polyester-based biodegradable plastics: an approach towards sustainable development[J]. Letters in Applied Microbiology, 2020, 70(6): 413-430.
doi: 10.1111/lam.13287 pmid: 32086820
[10] SU A, SHIRKE A, BAIK J, et al. Immobilized cutinases: preparation, solvent tolerance and thermal stability[J]. Enzyme and Microbial Technology, 2018, 116: 33-40.
doi: S0141-0229(18)30181-9 pmid: 29887014
[11] MARASOVIC P, KOPITAR D, BRUNŠEK R, et al. Performance and degradation of nonwoven mulches made of matural fibres and PLA polymer: open field study[J]. Polymers, 2023, 15(22): 4447.
doi: 10.3390/polym15224447
[12] BRUNSEK R, JUGOV N, MARASOVIC P, et al. Biodegradation properties of natural fibers for agro textile nonwovens production[C]// IOP Conference Series: Materials Science and Engineering. Bristol: IOP Publishing Ltd, 2023, 1266: 012017.
[13] 赵燕芳, 钟美玲, 唐奥奇, 等. 基于PVA物理交联构建具有分级结构的一体化支架[J]. 高分子通报, 2024, 37(3): 385-394.
ZHAO Yanfang, ZHONG Meiling, TANG Aoqi, et al. Construction of an integrated scaffold with a hierarchical structure based on PVA physical crosslinking[J]. Polymer Bulletin, 2024, 37 (3): 385-394.
doi: 10.1007/BF00318072
[14] LIU Y, DENG Y, CHEN P, et al. Biodegradation analysis of polyvinyl alcohol during the compost burial course[J]. Journal of Basic Microbiology, 2019, 59(4): 368-374.
doi: 10.1002/jobm.201800468 pmid: 30693540
[15] OLKHOV A A, MASTALYGINA E E, OVCHINNIKOV V A, et al. Biological and oxidative degradation of ultrathin-fibrous nonwovens based on poly (lactic acid)/poly (3-hydroxybutyrate) blends[J]. International Journal of Molecular Sciences, 2023, 24(9): 7979.
doi: 10.3390/ijms24097979
[16] MA J, CAO Y, FAN L, et al. Degradation characteristics of polybutylene adipate terephthalic acid (PBAT) and its effect on soil physicochemical properties: a comparative study with several polyethy-lene (PE) mulch films[J]. Journal of Hazardous Materials, 2023, 456: 131661.
doi: 10.1016/j.jhazmat.2023.131661
[17] PLOHL O, ERJAVEC A, ZEMLJIČ L F, et al. Morphological, surface and thermal properties of polylactic acid foils, melamine-etherified resin, and polyethylene terephthalate fabric during (bio) degradation in soil[J]. Journal of Cleaner Production, 2023, 421: 138554.
doi: 10.1016/j.jclepro.2023.138554
[18] SHI J, ZHANG L, XIAO P, et al. Biodegradable PLA nonwoven fabric with controllable wettability for efficient water purification and photocatalysis degradation[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(2): 2445-2452.
[19] 詹志城. 模拟自然环境下聚乳酸非织造布加速生物降解行为研究[D]. 广州: 华南理工大学, 2015: 16-35.
ZHAN Zhicheng. Research on accelerated biodegradation behavior of polylactic acid nonwovens in simulated natural environment[D]. Guangzhou: South China University of Technology, 2015: 16-35.
[20] HABLOT E, DHARMALINGAM S, HAYES D G, et al. Effect of simulated weathering on physicochemical properties and inherent biodegradation of PLA/PHA nonwoven mulches[J]. Journal of Polymers and the Environment, 2014, 22: 417-429.
doi: 10.1007/s10924-014-0697-0
[21] LIU Y, ZHAN Z, YE H, et al. Accelerated biodegradation of PLA/PHB-blended nonwovens by a microbial community[J]. RSC Advances, 2019, 9(18): 10386-10394.
doi: 10.1039/C8RA10591J
[22] PUCHALSKI M, SIWEK P, PANAYOTOV N, et al. Influence of various climatic conditions on the structural changes of semicrystalline PLA spun-bonded mulching nonwovens during outdoor composting[J]. Polymers, 2019, 11(3): 559.
doi: 10.3390/polym11030559
[23] TOKIWA Y, KAWABATA G, JARERAT A. A modified method for isolating poly (vinyl alcohol)-degrading bacteria and study of their degradation pat-terns[J]. Biotechnology letters, 2001, 23: 1937-1941.
doi: 10.1023/A:1013785817554
[24] KIM B C, SOHN C K, LIM S K, et al. Degradation of polyvinyl alcohol by Sphingomonas sp. SA3 and its symbiote[J]. Journal of Industrial Microbiology and Biotechnology, 2003, 30(1): 70-74.
doi: 10.1007/s10295-002-0010-4
[25] 宋静雯, 程慧鹏, 朱亚楠, 等. 防护用PVA复合材料的制备及性能研究[J]. 化工新型材料, 2024, 52(1): 189-193.
doi: 10.19817/j.cnki.issn1006-3536.2024.01.043
SONG Jingwen, CHENG Huipeng, ZHU Yanan, et al. Preparation and properties of PVA composites for protection[J]. New Chemical Materials, 2024, 52(1): 189-193.
doi: 10.19817/j.cnki.issn1006-3536.2024.01.043
[26] VACLAVKOVA T, RUZICKA J, JULINOVA M, et al. Novel aspects of symbiotic (polyvinyl alcohol) biodegradation[J]. Applied Microbiology and Biotechnology, 2007, 76: 911-917.
pmid: 17594087
[27] 张欣, 刘畅, 陈惠, 等. 降解聚乙烯醇的尖孢镰刀菌鉴定与性能研究[J]. 江西农业学报, 2024, 36(10): 47-53.
ZHANG Xin, LIU Chang, CHEN Hui, et al. Identification and properties of Fusarium oxysporum for polyvinyl alcohol degradation[J]. Chinese Journal of Jiangxi Agriculture, 2024, 36 (10): 47-53.
[28] SÓJKA-LEDAKOWICZ J, ŁATWIŃSKA M, KUDZIN M, et al. A study on obtaining nonwovens using polyhydroxyalkanoates and the melt-blown technique[J]. E-Polymers, 2014, 14(5): 373-380.
doi: 10.1515/epoly-2014-0089
[29] OLKHOV A A, MASTALYGINA E E, OVCHINNIKOV V A, et al. Thermo-oxidative destruction and biodegradation of nanomaterials from composites of poly(3-hydroxybutyrate) and chitosan[J]. Polymers, 2021, 13(20): 3528.
doi: 10.3390/polym13203528
[30] IRIZAR A, AMORIM M J B, FULLER K P, et al. Environmental fate and effect of biodegradable electro-spun scaffolds (biomaterial): a case study[J]. Journal of Materials Science(Materials in Medicine), 2018, 29: 1-10.
[31] OZTEMUR J, OZDEMIR S, TEZCAN-UNLU H, et al. Investigation of biodegradability and cellular activity of PCL/PLA and PCL/PLLA electrospun webs for tissue engineering applications[J]. Biopolymers, 2023, 114(11): e23564.
doi: 10.1002/bip.v114.11
[32] HEIMOWSKA A, MORAWSKA M, BOCHO-JANISZEWSKA A. Biodegradation of poly (ε-caprolactone) in natural water environments[J]. Polish Journal of Chemical Technology, 2017, 19(1): 120-126.
[33] 王格侠, 黄丹, 张维, 等. 典型生物降解聚酯在海水中的降解性能[J]. 功能高分子学报, 2020, 33(5): 492-499.
WANG Gexia, HUANG Dan, ZHANG Wei, et al. Degradation properties of typical biodegradable polyesters in seawater[J]. Journal of Functional Polymers, 2020, 33 (5): 492-499.
[34] 和玉光, 郝思嘉, 田俊鹏, 等. PBAT含量对PLA基可降解共混切片及复合熔喷非织造布性能的影响[J]. 材料工程, 2024, 52(3): 82-89.
doi: 10.11868/j.issn.1001-4381.2022.001080
HE Yuguang, HAO Sijia, TIAN Junpeng, et al. Effect of PBAT content on the properties of PLA-based degradable blend slices and composite meltblown nonwovens[J]. Materials Engineering, 2024, 52 (3): 82-89.
[35] 刘庆玉. TPS共混改性生物可降解PBAT及其纺丝成形[D]. 上海: 东华大学, 2022: 13-15.
LIU Qingyu. TPS blending modified biodegradable PBAT and its spinning forming[D]. Shanghai: Donghua University, 2022: 13-15.
[36] 陈咏, 乌婧, 王朝生, 等. 生物可降解聚己二酸-对苯二甲酸丁二醇酯纤维的制备及其环境降解性能[J]. 纺织学报, 2022, 43(2): 37-43.
CHEN Yong, WU Jing, WANG Chaosheng, et al. Preparation and environmental degradation properties of biodegradable polyadipate-butylene terephthalate fibers[J]. Journal of Textile Research, 2022, 43 (2): 37-43.
[37] 鲁伟涛, 靳向煜. PBST纺黏土工排水板滤膜的可降解性能[J]. 东华大学学报(自然科学版), 2014, 40(2): 213-219.
LU Weitao, JIN Xiangyu. Degradability of PBST spinning clay drainage plate filter membrane[J]. Journal of Donghua University (Natural Science Edition), 2014, 40 (2): 213-219.
[38] 李婷婷. 生物可降解聚丁二酸丁二醇—共—对苯二甲酸丁二醇酯 (PBST) 纤维的制备及其性能研究[D]. 上海: 东华大学, 2007: 71-81.
LI Tingting. Preparation and properties of biodegradable polybutylene succinate-co-butylene terephthalate(PBST) fibers[D]. Shanghai: Donghua University, 2007: 71-81.
[39] PANG W, LI B, WU Y, et al. Optimization of degradation behavior and conditions for the protease K of polylactic acid films by simulation[J]. International Journal of Biological Macromolecules, 2023, 253: 127496.
doi: 10.1016/j.ijbiomac.2023.127496
[40] SATTI S M, SHAH A A, AURAS R, et al. Isolation and characterization of bacteria capable of degrading poly(lactic acid) at ambient temperature[J]. Polymer Degradation and Stability, 2017, 144: 392-400.
doi: 10.1016/j.polymdegradstab.2017.08.023
[41] SOLARO R, CORTI A, CHIELLINI E. Biodegradation of poly (vinyl alcohol) with different molecular weights and degree of hydrolysis[J]. Polymers for Advanced Technologies, 2000, 11(8-12): 873-878.
doi: 10.1002/(ISSN)1099-1581
[42] 戴国雄. 高性能海洋防污材料: 主链降解-侧基水解高分子的研究[D]. 广州: 华南理工大学, 2021: 25-38.
DAI Guoxiong. Study on high performance marine antifouling material: backbone degradation-side group hydrolysis polymer[D]. Guangzhou: South China University of Technology, 2021: 25-38.
[43] 储星宇, 方芳, 徐润泽, 等. 聚羟基脂肪酸酯在不同条件下的生物降解研究进展[J]. 中国塑料, 2025, 39(4): 84-91.
doi: 10.19491/j.issn.1001-9278.2025.04.015
CHU Xingyu, FANG Fang, XU Runze, et al. Progress of biodegradation of polyhydroxy fatty acid esters under different conditions[J]. China Plastics, 2025, 39(4): 84-91.
doi: 10.19491/j.issn.1001-9278.2025.04.015
[44] MEEREBOER K W, MISRA M, MOHANTY A K. Review of recent advances in the biodegradability of polyhydroxyalkanoate(PHA) bioplastics and their composites[J]. Green Chemistry, 2020, 22(17): 5519-5558.
doi: 10.1039/D0GC01647K
[45] LAYCOCK B, NIKOLIĆ M, COLWELL J M, et al. Lifetime prediction of biodegradable polymers[J]. Progress in Polymer Science, 2017, 71: 144-189.
doi: 10.1016/j.progpolymsci.2017.02.004
[46] TOKIWA Y, CALABIA B P, UGWU C U, et al. Biodegradability of plastics[J]. International Journal of Molecular Sciences, 2009, 10(9): 3722-3742.
doi: 10.3390/ijms10093722 pmid: 19865515
[47] FERNANDES M, SALVADOR A F, VICENTE A A. Biodegradation of PHB/PBAT films and isolation of novel PBAT biodegraders from soil microbiomes[J]. Chemosphere, 2024, 362: 142696.
doi: 10.1016/j.chemosphere.2024.142696
[48] DÍAZ A, KATSARAVA R, PUIGGALÍ J. Synthesis, properties and applications of biodegradable polymers derived from diols and dicarboxylic acids: from polyesters to poly (ester amide)s[J]. International Journal of Molecular Sciences, 2014, 15(5): 7064-7123.
doi: 10.3390/ijms15057064
[49] 林晓珊. 聚乳酸(PLA)非织造材料加速降解微生物作用体系的初步建立[D]. 广州: 华南理工大学, 2020: 70-78.
LIN Xiaoshan. Preliminary establishment of microbial action system for accelerated degradation of polylactic acid (PLA) nonwovens[D]. Guangzhou: South China University of Technology, 2020: 70-78.
[50] 张惠琴, 吴改红, 刘霞, 等. 生物可降解聚乳酸防护口罩的开发及性能评估[J]. 纺织学报, 2025, 46(3): 116-122.
ZHANG Huiqin, WU Gaihong, LIU Xia, et al. Development and performance evaluation of biodegradable polylactic acid protective masks[J]. Chinese Journal of Textiles, 2025, 46 (3): 116-122.
[51] LOTTO N T, CALIL M R, GUEDES C G F, et al. The effect of temperature on the biodegradation test[J]. Materials Science and Engineering: C, 2004, 24(5): 659-662.
doi: 10.1016/j.msec.2004.08.009
[52] GIL-CASTELL O, ANDRES-PUCHE R, DOMINGUEZ E, et al. Influence of substrate and temperature on the biodegradation of polyester-based materials: polylactide and poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) as model cases[J]. Polymer Degradation and Stability, 2020, 180: 109288.
doi: 10.1016/j.polymdegradstab.2020.109288
[53] ŁATWIŃSKA M, SÓJKA-LEDAKOWICZ J, KUDZIN M. Influence of poly (3-hydroxybutyrate) addition on the properties of poly (lactic acid) nonwoven obtained by the melt-blown technique[J]. Polimery, 2015, 60(7/8): 486-491.
doi: 10.14314/polimery
[54] GUICHERD M, BEN KHALED M, GUÉROULT M, et al. An engineered enzyme embedded into PLA to make self-biodegradable plastic[J]. Nature, 2024, 631: 884-890.
doi: 10.1038/s41586-024-07709-1
[1] 王浩鹏, 张佳文, 牛云蔚, 柯勤飞, 赵奕. 芳香抗菌双包络结构芳樟醇/聚酰胺/玉米醇溶蛋白微纳米非织造材料[J]. 纺织学报, 2025, 46(09): 94-103.
[2] 侯颖慧, 刘肖燕, 柳东辰, 郝矿荣, 邹婷. 基于体外降解的输尿管支架管的多目标优化[J]. 纺织学报, 2025, 46(09): 154-162.
[3] 张新宇, 金小培, 朱金唐, 崔华帅, 吴鹏飞, 崔宁, 史贤宁. 聚乳酸熔喷非织造布热尺寸稳定性提升方法[J]. 纺织学报, 2025, 46(08): 127-135.
[4] 陈展毓, 俞森龙, 周家良, 朱丽萍, 周哲, 相恒学, 朱美芳. 有机膦酸改性聚乳酸织物的制备及其性能[J]. 纺织学报, 2025, 46(08): 154-163.
[5] 谭文萍, 张硕, 张倩, 张寅, 刘润政, 黄晓卫, 明津法. 聚乳酸纤维气凝胶制备及其辐射制冷性能[J]. 纺织学报, 2025, 46(06): 63-72.
[6] 时晓聪, 陈莉, 杜迅. 茜素-聚乳酸/胶原蛋白纳米纤维膜的制备及其氨气检测性能[J]. 纺织学报, 2025, 46(05): 143-150.
[7] 张惠琴, 吴改红, 刘霞, 刘淑强, 赵恒, 刘涛. 生物可降解聚乳酸防护口罩的开发及性能评估[J]. 纺织学报, 2025, 46(03): 116-122.
[8] 乔思杰, 邢桐贺, 童爱心, 史芷丞, 潘恒, 刘可帅, 余豪, 陈凤翔. 不同聚乳酸材料的性能对比[J]. 纺织学报, 2025, 46(03): 27-33.
[9] 赵珂, 张恒, 程文胜, 甄琪, 步青云, 崔景强. 类蒲叶结构聚乳酸熔喷非织造材料的制备及其性能[J]. 纺织学报, 2025, 46(02): 51-60.
[10] 王容容, 周洲, 冯祥, 申莹, 刘峰, 邢剑. 聚酯纤维与聚乙烯/聚丙烯双组分纤维多孔吸声材料的制备及其性能[J]. 纺织学报, 2025, 46(02): 61-68.
[11] 左红梅, 高敏, 阮芳涛, 邹梨花, 徐珍珍. MXene-氧化石墨烯改性碳纤维/聚乳酸复合材料制备及其力学性能[J]. 纺织学报, 2025, 46(01): 9-15.
[12] 夏梦, 成悦, 刘蓉, 李大伟, 付译鋆. 普鲁士蓝涂层非织造材料在细菌检测中的应用[J]. 纺织学报, 2024, 45(12): 166-171.
[13] 刘霞, 吴改红, 闫子豪, 王彩柳. 智能相变调温聚乳酸纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(12): 18-24.
[14] 欧宗权, 于金超, 潘志娟. 光致变色聚乳酸/聚3-羟基丁酸酯共混纤维的纺制及其结构与性能[J]. 纺织学报, 2024, 45(12): 9-17.
[15] 闫迪, 王雪芳, 谭文萍, 高国金, 明津法, 宁新. 富咪唑型多孔左旋聚乳酸纳米纤维膜制备及其双重净水性能[J]. 纺织学报, 2024, 45(08): 116-126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!