纺织学报 ›› 2025, Vol. 46 ›› Issue (09): 154-162.doi: 10.13475/j.fzxb.20241205401
HOU Yinghui1, LIU Xiaoyan1(
), LIU Dongchen1, HAO Kuangrong1, ZOU Ting2
摘要:
输尿管支架管在病体内提供必要的支撑和引流作用,因此支架管的力学性能对于确保治疗的有效性和安全性至关重要,尤其是对于生物可降解输尿管支架管来说,在降解周期内其力学性能逐渐降低。为探究可降解输尿管支架管能否在降解周期内保证足够的力学性能,使用本构模型来预测由聚乙醇酸(PGA)和聚乳酸-羟基乙酸共聚物(PGLA)制成的“纤-膜”可降解输尿管支架管的力学性能演变。利用有限元软件(ABAQUS)结合用户材料子程序(VUMAT)根据降解时间自动更新材料参数同时应用基于强度的失效准则,实现了降解周期内“纤-膜”可降解输尿管支架管力学性能的模拟,并通过对降解前(降解0周)和降解3周支架管力学性能的多目标优化,得到了在降解过程中力学性能最优的支架管结构参数。研究发现,优化后的支架管在降解初期的径向压缩性能提高了17.89%,轴向拉伸性能提高了27.89%;降解3周的径向压缩性能提高了25.14%,轴向拉伸性能提高了33.62%。经过优化后的支架管提高了降解前的力学性能,并在一定降解时间内可以保持较高水平,有效延长了在体内的支撑时间。
中图分类号:
| [1] |
GRAZIA A D, SOMAN B K, SORIA F, et al. Latest advancements in ureteral stent technology[J]. Transl Androl Urol, 2019, 8:436-441.
doi: 10.21037/tau.2019.08.16 pmid: 31656749 |
| [2] | 侯宇川. 新型可生物降解材料输尿管支架的研制[D]. 长春: 吉林大学, 2004:12-25. |
| HOU Yuchuan. Development of a new biodegradable material for ureteral stents[D]. Changchun: Jilin University, 2004: 12-25. | |
| [3] | 王晓庆. 梯度可降解输尿管支架管的研制及动物实验研究[D]. 长春: 吉林大学, 2014:29-36. |
| WANG Xiaoqing. Development and animal experimental study of gradient degradable ureteral stent[D]. Changchun: Jilin University, 2014: 29-36. | |
| [4] | 邹婷. 新型“纤-膜”可降解输尿管支架管的制备、结构及其降解行为[D]. 上海: 东华大学,2015:14-51. |
| ZOU Ting. Preparation, structure, and degradation behavior of a novel "fiber-membrane" degradable ureteral stent[D]. Shanghai: Donghua University, 2015: 14-51. | |
| [5] | 吴焕岭, 谢周良, 汪阳, 等. 胶原蛋白改性聚乳酸-羟基乙酸载药纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(11): 11-13. |
| WU Huanling, XIE Zhouliang, WANG Yang, et al. Preparation and properties of collagen-modified polylactic-co-glycolic acid drug-loaded nanofiber membranes[J]. Journal of Textile Research, 2022, 43(11): 11-13. | |
| [6] | 刘园园, 刘鹏碧, 陈南梁. 体外加速降解对聚丙烯/聚乳酸可降解复合疝气补片的影响[J]. 纺织学报, 2015, 36(12): 53-56. |
| LIU Yuanyuan, LIU Pengbi, CHEN Nanliang. Effects of accelerated degradation in vitro on polypropylene/polylactic acid degradable composite hernia mesh[J]. Journal of Textile Research, 2015, 36(12): 53-56. | |
| [7] | SHANG Y F, ZOU T, ZHANG M Q, et al. The in vitro degradation study of a braided thin-walled biodegradable ureteral stent[J]. Shanghai Medical Association, 2012:401-407. |
| [8] | 王晓明. 编织型可降解输尿管支架管的制备工艺及其结构与性能[D]. 上海: 东华大学,2015:58-77. |
| WANG Xiaoming. Preparation process, structure, and properties of braided degradable ureteral stents[D]. Shanghai: Donghua University, 2015: 58-77. | |
| [9] | SHINE C J, MCHUGH P E, RONAN W. Impact of degradation and material crystallinity on the mechanical performance of a bioresorbable polymeric stent[J]. Journal of Elasticity,2021: 243-264. |
| [10] |
VIEIR A F C, DASILVA E H P, RIBEIRO M L. Numerical approach to simulate the mechanical behavior of biodegradable polymers during erosion[J]. Polymers. 2023, 15(9):12-21.
doi: 10.3390/polym15010012 |
| [11] | 邹婷, 于成龙, 王璐. 热处理对“纤-膜”结构输尿管支架管降解行为的影响[J]. 东华大学学报(自然科学版), 2016, 42(3): 356-362. |
| ZOU Ting, YU Chenglong, WANG Lu. Effect of heat treatment on the degradation behavior of "fiber-membrane" structured ureteral stents[J]. Journal of Donghua University (Natural Science Edition), 2016, 42(3): 356-362. | |
| [12] |
BUKALA J, BUSZMAN P P, MAZURKIEWICZ L, et al. Experimental tests, FEM constitutive modeling and validation of PLGA bioresorbable polymer for stent applications[J]. Materials, 2020, 13(8): 5-7.
doi: 10.3390/ma13010005 |
| [13] |
YANG G, XIE H, HUANG Y, et al. Immersed multilayer biodegradable ureteral stent with reformed biodegradation: an in vitro experiment[J]. Journal of Biomaterials Applications, 2017, 31(8):1235-1244.
doi: 10.1177/0885328217692279 pmid: 28274192 |
| [14] | LOW Y J, ANDRIYANA A, ANG B C, et al. Bioresorbable and degradable behaviors of PGA: current state and future prospects[J]. Polymer Engineering and Science, 2020, 60(11):2657-2675. |
| [15] |
VIEIRA A C, VIEIRA J C, FERRA J M, et al. Mechanical study of PLA-PCL fibers during in vitro degradation[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4(3): 451-460.
doi: 10.1016/j.jmbbm.2010.12.006 pmid: 21316633 |
| [16] | VIEIRA A C, GSUEDE R M, TITA V. Constitutive modeling of biodegradable polymers: hydrolytic degradation and time-dependent behavior[J]. International Journal of Solids and Structures, 2014:1164-1174. |
| [17] | 吴双全. PGA、 PLA纤维及纺织结构肌腱支架的降解性能研究[D]. 上海: 东华大学,2009:14-46. |
| WU Shuangquan. Study on the degradation properties of PGA, PLA fibers, and textile-structured tendon scaffolds[D]. Shanghai: Donghua University, 2009: 14-46. | |
| [18] |
VALOMAA T, LAAKSOVIRTA S. Degradation behavior of self-reinforced 80L/20G PLGA devices in vitro[J]. Biomaterials, 2004, 25(7/8):1225-1232.
doi: 10.1016/j.biomaterials.2003.08.072 |
| [19] |
PENG K, CUI X Y, QIAO A K, et al. Mechanical analysis of a novel biodegradable zinc alloy stent based on a degradation model[J]. BioMedical Engineering OnLine, 2019, 18(39):4-6.
doi: 10.1186/s12938-018-0621-2 |
| [20] | 郑永雄. 西藏地区泌尿系统结石患者术后留置输尿管支架管合理时间的研究-单中心研究数据[D]. 拉萨: 西藏大学,2023:4-16. |
| ZHENG Yongxiong. Study on the optimal duration of postoperative ureteral stent placement in patients with urinary calculi in Tibet: a single-center research data[D]. Lhasa: Tibet University, 2023: 4-16. | |
| [21] | 刘璐. 双组分可降解输尿管支架管的力学性能分析与优化[D]. 上海: 东华大学,2022:34-44. |
| LIU Lu. Mechanical performance analysis and optimization of dual-component degradable ureteral stents[D]. Shanghai: Donghua University, 2022: 34-44. | |
| [22] | WANG H J, LI J, SUN J, et al. Multi-objective optimization of bioresorbable magnesium alloy stent by Kriging surrogate model[J]. Cardiovascular Engineering and Technology, 2022(13):829-839. |
| [23] | ZHU L, QIAO L, GAO Y M, et al. Multi-objective structural optimization and degradation model of magnesium alloy ureteral stent[J]. Medicine in Novel Technology and Devices, 2024(22): 4-7. |
| [24] | LIU Z C, CHEN G F, WANG Z W, et al. Multi-objective design optimization of stent-grafts for the aortic arch[J]. Materials & Design, 2023, 227: 4-9. |
| [1] | 岳航, 鹿超, 王春红, 李瀚宇. 基于主要化学成分的红麻与大麻拉伸强度预测[J]. 纺织学报, 2025, 46(08): 62-70. |
| [2] | 高闻语, 陈诚, 奚晓玮, 邓林红, 刘杨. 改性丝素蛋白纤维增强胶原基角膜修复材料的制备及其性能[J]. 纺织学报, 2025, 46(08): 1-9. |
| [3] | 梁锋, 方沿, 张伟华, 唐余玲, 李双洋, 周建飞, 石碧. 基于金属-多酚网络的胶原蛋白基纤维制备及其力学性能[J]. 纺织学报, 2025, 46(08): 10-17. |
| [4] | 陈晴宇, 陆春红, 张斌, 晋义凯, 黄琪帏, 王超, 丁彬, 俞建勇, 王先锋. 碳纤维增强水泥基灌浆料的制备及其性能[J]. 纺织学报, 2025, 46(08): 120-126. |
| [5] | 刘宇祥, 乌婧, 徐锦龙, 谢锐敏, 王华平. 阳离子可染聚对苯二甲酸丙二醇酯预取向丝的制备及其性能[J]. 纺织学报, 2025, 46(07): 46-52. |
| [6] | 朱雷, 李晓俊, 程春祖, 徐纪刚, 杜心宇. 四硼酸钠/单宁酸交联对海藻酸钙纤维结构与性能的影响[J]. 纺织学报, 2025, 46(07): 28-36. |
| [7] | 王惠婷, 陈宇鉴, 刘诗仪, 张显涛, 陆斌, 邹专勇, 王建, 张寅江. 海藻酸盐基非织造医用敷料的研究进展[J]. 纺织学报, 2025, 46(06): 240-249. |
| [8] | 丁凯, 符芬, 张智翔, 杨语童, 李超婧, 赵帆, 王璐, 王富军. 按压排尿用针织人工膀胱的设计及其力学性能[J]. 纺织学报, 2025, 46(05): 169-178. |
| [9] | 符芬, 王钰涵, 丁凯, 赵帆, 李超靖, 王璐, 曾泳春, 王富军. 纤维素基止血材料的研究进展[J]. 纺织学报, 2025, 46(04): 226-234. |
| [10] | 李金键, 薛元, 陈宥融. 时序分布的段彩竹节纱及三通道转杯成纱工艺设计[J]. 纺织学报, 2025, 46(03): 72-81. |
| [11] | 宋婉萌, 王宝弘, 孙宇, 杨家祥, 刘云, 王玉忠. 兼具力学性能与高效阻燃性能粘胶织物的制备及其性能[J]. 纺织学报, 2025, 46(02): 188-196. |
| [12] | 卢海龙, 于影, 左雨欣, 王浩然, 陈洪立, 汝欣. 取向增强抗CO2腐蚀纤维薄膜的制备及其性能[J]. 纺织学报, 2024, 45(12): 33-40. |
| [13] | 李沂蒙, 单梦琪, 李雯昕, 周奉凯, 毛吉富, 王富军, 王璐. 聚吡咯基可拉伸导电心肌补片的制备及其电传导性能[J]. 纺织学报, 2024, 45(12): 89-97. |
| [14] | 杨鑫, 张昕, 潘志娟. 丝素纳米原纤增强再生丝素蛋白/聚乙烯醇纤维的结构与性能[J]. 纺织学报, 2024, 45(11): 1-9. |
| [15] | 缪璐璐, 孟小奕, 董正梅, 彭倩, 何林伟, 邹专勇. 热处理工艺对喷气涡流纺低熔点涤纶长丝包芯纱力学性能的影响[J]. 纺织学报, 2024, 45(11): 73-79. |
|
||