纺织学报 ›› 2025, Vol. 46 ›› Issue (09): 154-162.doi: 10.13475/j.fzxb.20241205401

• 纺织工程 • 上一篇    下一篇

基于体外降解的输尿管支架管的多目标优化

侯颖慧1, 刘肖燕1(), 柳东辰1, 郝矿荣1, 邹婷2   

  1. 1.东华大学 信息科学与技术学院, 上海 201620
    2.东华大学 生物与医学工程学院, 上海 201620
  • 收稿日期:2024-12-23 修回日期:2025-06-13 出版日期:2025-09-15 发布日期:2025-11-12
  • 通讯作者: 刘肖燕(1982—),女,高级实验师,博士。主要研究方向为医用纺织品力学性能建模与仿真。E-mail:Liuxy@dhu.edu.cn
  • 作者简介:侯颖慧(2000—),女,硕士生。主要研究方向为输尿管支架管的智能建模。
  • 基金资助:
    国家自然科学基金项目(61903078)

Multi-objective optimization of ureteral stent tubes based on in vitro degradation

HOU Yinghui1, LIU Xiaoyan1(), LIU Dongchen1, HAO Kuangrong1, ZOU Ting2   

  1. 1. College of Information Science and Technology, Donghua University, Shanghai 201620, China
    2. College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
  • Received:2024-12-23 Revised:2025-06-13 Published:2025-09-15 Online:2025-11-12

摘要:

输尿管支架管在病体内提供必要的支撑和引流作用,因此支架管的力学性能对于确保治疗的有效性和安全性至关重要,尤其是对于生物可降解输尿管支架管来说,在降解周期内其力学性能逐渐降低。为探究可降解输尿管支架管能否在降解周期内保证足够的力学性能,使用本构模型来预测由聚乙醇酸(PGA)和聚乳酸-羟基乙酸共聚物(PGLA)制成的“纤-膜”可降解输尿管支架管的力学性能演变。利用有限元软件(ABAQUS)结合用户材料子程序(VUMAT)根据降解时间自动更新材料参数同时应用基于强度的失效准则,实现了降解周期内“纤-膜”可降解输尿管支架管力学性能的模拟,并通过对降解前(降解0周)和降解3周支架管力学性能的多目标优化,得到了在降解过程中力学性能最优的支架管结构参数。研究发现,优化后的支架管在降解初期的径向压缩性能提高了17.89%,轴向拉伸性能提高了27.89%;降解3周的径向压缩性能提高了25.14%,轴向拉伸性能提高了33.62%。经过优化后的支架管提高了降解前的力学性能,并在一定降解时间内可以保持较高水平,有效延长了在体内的支撑时间。

关键词: 可降解输尿管支架管, 聚合物降解, 力学性能, 聚乙醇酸, 聚乳酸-羟基乙酸共聚物, 医用纺织品

Abstract:

Objective Ureteral stent tubes provide necessary support and drainage within the body, so the mechanical properties of the stent tube are crucial to ensurine its effectiveness and safety. For biodegradable ureteral stent tubes, their mechanical properties will gradually decrease over the degradation period. A study on the mechanical properties of ureteral stent undergoing in vitro degradation and on the performance of multi-objective optimization is purposed.

Method A mathematical model for the random hydrolysis of polymers was established and embeded into finite element simulation for degradation simulation. The writing of the VUMAT subroutine was adopted to control the simulation of cell failure in the degradation process of the stent, and a combination of finite element simulation, theoretical prediction, and experimental test results was adopted to study the mechanical properties of the ureteral stent under different degradation periods.

Results A corresponding three-dimensional geometric model was constructed based on ureteral stent prepared from a fiber-membrane. The accuracy of the geometric model was verified by comparing the finite element results with the actual experimental results. For the ureteral stent prepared from the fiber-membrane, the regular weaving structure of PGA and PGLA yarns evenly distributed on the stent after being combined demonstrated the best mechanical enhancement performance after high-temperature heat treatment. Therefore, stent tube C was selected for the study of its mechanical properties during the degradation cycle. The degradation process was expressed in the form of unit damage failure, and the numerical method of ABAQUS was used in combination with the user material subroutine (VUMAT) to automatically update material parameters based on degradation time. At the same time, a strength based failure criterion was applied to simulate the mechanical properties of fiber-membrane degradable ureteral stents under different degradation times. Based on this result, 20 initial sample points were generated using the optimal Latin hypercube sampling method, and a Kriging surrogate model was constructed using these sample points to predict the mechanical properties of the fiber-membrane ureteral stent before degradation at 0 weeks and 3 weeks of degradation. NSGA-II was adopted to optimize the structure of the fiber-membrane ureteral stent. After optimization using this algorithm, a set of Pareto solutions was obtained. The algorithm specified the optimal solution as the optimization result, and the stent structure parameters with the best mechanical properties during degradation were obtained. The optimized stent showed a 17.89% increase in radial compression performance and a 27.89% increase in axial tensile performance before degradation. After 3 weeks of degradation, the radial compression performance increased by 25.14% and the axial tensile performance increased by 33.62%. The optimized fiber-membrane degradable ureteral stent was found to possess improved mechanical properties before degradation and to maintain a high level of performance during a certain degradation period, thereby extending its support and drainage period in vivo.

Conclusion This study investigated the mechanical properties of degradable ureteral stent tubes with fiber-membrane structure before degradation and simulated degradation in vitro, and the following conclusions can be drawn. (1) Numerical simulation was conducted on the degradation process of fiber-membrane degradable ureteral stent, and the mechanical properties during the degradation cycle were studied. The effectiveness of the degradation model was verified through comparison with physical experiments, effectively solving the problems of long cycles and high costs in experimental and clinical testing. (2) Multi-objective optimization of the mechanical properties of stents was carried out based on a kriging surrogate model, and the evolution relationship of mechanical properties before and during degradation was obtained, providing reference for the design of biodegradable stent structures.

Key words: biodegradable ureteral stent tube, polymer degradation, mechanical property, polyglycolic acid, poly (lactide-co-glycolide), medical texile

中图分类号: 

  • R318.01

图1

“纤-膜 ”结构输尿管支架管编织结构示意图"

图2

径向压缩有限元模型"

图3

轴向拉伸有限元模型"

图4

3种支架管轴向拉伸有限元分析"

图5

3种支架管径向压缩有限元分析"

表1

3种试样的力学性能结果对比"

类型 拉伸强力/N 压缩强力/cN
有限元模型 实物实验 有限元模型 实物实验
A 44.430 42.153 255.121 250.832
B 41.031 39.800 203.003 199.472
C 56.313 56.313 241.538 241.538

图6

数均分子量"

图7

降解周期内C组分支架管轴向拉伸有限元分析"

图8

降解周期内C组分支架管径向压缩有限元分析"

表2

降解周期内力学性能结果对比"

降解
周期
拉伸强力/N 压缩强力/cN
有限元模型 本文实验 有限元模型 本文实验
1周 23.974 25.102 121.596 123.335
2周 18.649 19.274 69.537 72.021
3周 12.301 12.500 27.622 30.370

表3

试验样本数据结果"

序号 $\alpha /(°)$ l/mm d/mm FS0/N FS3/N FN0/cN FN3/cN
1 40.00 0.030 0 2.295 22.341 5.970 27.055 5.446
2 41.05 0.048 9 1.405 35.056 9.670 130.860 22.400
3 42.11 0.046 8 1.953 34.973 8.490 65.988 10.902
4 43.16 0.044 7 2.432 53.722 13.038 34.022 5.998
5 44.21 0.036 3 1.747 23.730 6.810 49.820 8.310
16 55.79 0.067 9 1.884 75.002 16.360 246.427 34.017
17 56.84 0.042 6 2.500 53.611 18.178 165.875 21.952
18 57.89 0.053 2 1.200 33.583 11.397 180.562 25.927
19 58.95 0.059 5 1.337 47.057 15.580 234.127 32.271
20 60.00 0.063 7 1.611 73.881 17.740 260.730 35.714

表4

代理模型拟合误差评估"

评价标准 平均误差 最大误差 均方根误差 R2
径向
支撑
0周 0.033 19 0.090 58 0.041 01 0.974 92
3周 0.053 39 0.158 87 0.066 39 0.956 43
轴向
拉伸
0周 0.046 33 0.115 32 0.056 47 0.962 47
3周 0.054 52 0.151 28 0.067 74 0.944 33
接受水平 <0.2 <0.3 <0.2 >0.9

图9

不同目标函数的Pareto前沿图"

表5

优化结果对比"

指标 拉伸强力/N 压缩强力/cN
0周 3周 0周 3周
初始值 230.09 30.37 55.61 12.5
预测值 273.69 36.844 79.669 17.566
优化值 270.257 38.006 77.12 16.703
提升度 17.89% 25.14% 27.89% 33.62%
[1] GRAZIA A D, SOMAN B K, SORIA F, et al. Latest advancements in ureteral stent technology[J]. Transl Androl Urol, 2019, 8:436-441.
doi: 10.21037/tau.2019.08.16 pmid: 31656749
[2] 侯宇川. 新型可生物降解材料输尿管支架的研制[D]. 长春: 吉林大学, 2004:12-25.
HOU Yuchuan. Development of a new biodegradable material for ureteral stents[D]. Changchun: Jilin University, 2004: 12-25.
[3] 王晓庆. 梯度可降解输尿管支架管的研制及动物实验研究[D]. 长春: 吉林大学, 2014:29-36.
WANG Xiaoqing. Development and animal experimental study of gradient degradable ureteral stent[D]. Changchun: Jilin University, 2014: 29-36.
[4] 邹婷. 新型“纤-膜”可降解输尿管支架管的制备、结构及其降解行为[D]. 上海: 东华大学,2015:14-51.
ZOU Ting. Preparation, structure, and degradation behavior of a novel "fiber-membrane" degradable ureteral stent[D]. Shanghai: Donghua University, 2015: 14-51.
[5] 吴焕岭, 谢周良, 汪阳, 等. 胶原蛋白改性聚乳酸-羟基乙酸载药纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(11): 11-13.
WU Huanling, XIE Zhouliang, WANG Yang, et al. Preparation and properties of collagen-modified polylactic-co-glycolic acid drug-loaded nanofiber membranes[J]. Journal of Textile Research, 2022, 43(11): 11-13.
[6] 刘园园, 刘鹏碧, 陈南梁. 体外加速降解对聚丙烯/聚乳酸可降解复合疝气补片的影响[J]. 纺织学报, 2015, 36(12): 53-56.
LIU Yuanyuan, LIU Pengbi, CHEN Nanliang. Effects of accelerated degradation in vitro on polypropylene/polylactic acid degradable composite hernia mesh[J]. Journal of Textile Research, 2015, 36(12): 53-56.
[7] SHANG Y F, ZOU T, ZHANG M Q, et al. The in vitro degradation study of a braided thin-walled biodegradable ureteral stent[J]. Shanghai Medical Association, 2012:401-407.
[8] 王晓明. 编织型可降解输尿管支架管的制备工艺及其结构与性能[D]. 上海: 东华大学,2015:58-77.
WANG Xiaoming. Preparation process, structure, and properties of braided degradable ureteral stents[D]. Shanghai: Donghua University, 2015: 58-77.
[9] SHINE C J, MCHUGH P E, RONAN W. Impact of degradation and material crystallinity on the mechanical performance of a bioresorbable polymeric stent[J]. Journal of Elasticity,2021: 243-264.
[10] VIEIR A F C, DASILVA E H P, RIBEIRO M L. Numerical approach to simulate the mechanical behavior of biodegradable polymers during erosion[J]. Polymers. 2023, 15(9):12-21.
doi: 10.3390/polym15010012
[11] 邹婷, 于成龙, 王璐. 热处理对“纤-膜”结构输尿管支架管降解行为的影响[J]. 东华大学学报(自然科学版), 2016, 42(3): 356-362.
ZOU Ting, YU Chenglong, WANG Lu. Effect of heat treatment on the degradation behavior of "fiber-membrane" structured ureteral stents[J]. Journal of Donghua University (Natural Science Edition), 2016, 42(3): 356-362.
[12] BUKALA J, BUSZMAN P P, MAZURKIEWICZ L, et al. Experimental tests, FEM constitutive modeling and validation of PLGA bioresorbable polymer for stent applications[J]. Materials, 2020, 13(8): 5-7.
doi: 10.3390/ma13010005
[13] YANG G, XIE H, HUANG Y, et al. Immersed multilayer biodegradable ureteral stent with reformed biodegradation: an in vitro experiment[J]. Journal of Biomaterials Applications, 2017, 31(8):1235-1244.
doi: 10.1177/0885328217692279 pmid: 28274192
[14] LOW Y J, ANDRIYANA A, ANG B C, et al. Bioresorbable and degradable behaviors of PGA: current state and future prospects[J]. Polymer Engineering and Science, 2020, 60(11):2657-2675.
[15] VIEIRA A C, VIEIRA J C, FERRA J M, et al. Mechanical study of PLA-PCL fibers during in vitro degradation[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4(3): 451-460.
doi: 10.1016/j.jmbbm.2010.12.006 pmid: 21316633
[16] VIEIRA A C, GSUEDE R M, TITA V. Constitutive modeling of biodegradable polymers: hydrolytic degradation and time-dependent behavior[J]. International Journal of Solids and Structures, 2014:1164-1174.
[17] 吴双全. PGA、 PLA纤维及纺织结构肌腱支架的降解性能研究[D]. 上海: 东华大学,2009:14-46.
WU Shuangquan. Study on the degradation properties of PGA, PLA fibers, and textile-structured tendon scaffolds[D]. Shanghai: Donghua University, 2009: 14-46.
[18] VALOMAA T, LAAKSOVIRTA S. Degradation behavior of self-reinforced 80L/20G PLGA devices in vitro[J]. Biomaterials, 2004, 25(7/8):1225-1232.
doi: 10.1016/j.biomaterials.2003.08.072
[19] PENG K, CUI X Y, QIAO A K, et al. Mechanical analysis of a novel biodegradable zinc alloy stent based on a degradation model[J]. BioMedical Engineering OnLine, 2019, 18(39):4-6.
doi: 10.1186/s12938-018-0621-2
[20] 郑永雄. 西藏地区泌尿系统结石患者术后留置输尿管支架管合理时间的研究-单中心研究数据[D]. 拉萨: 西藏大学,2023:4-16.
ZHENG Yongxiong. Study on the optimal duration of postoperative ureteral stent placement in patients with urinary calculi in Tibet: a single-center research data[D]. Lhasa: Tibet University, 2023: 4-16.
[21] 刘璐. 双组分可降解输尿管支架管的力学性能分析与优化[D]. 上海: 东华大学,2022:34-44.
LIU Lu. Mechanical performance analysis and optimization of dual-component degradable ureteral stents[D]. Shanghai: Donghua University, 2022: 34-44.
[22] WANG H J, LI J, SUN J, et al. Multi-objective optimization of bioresorbable magnesium alloy stent by Kriging surrogate model[J]. Cardiovascular Engineering and Technology, 2022(13):829-839.
[23] ZHU L, QIAO L, GAO Y M, et al. Multi-objective structural optimization and degradation model of magnesium alloy ureteral stent[J]. Medicine in Novel Technology and Devices, 2024(22): 4-7.
[24] LIU Z C, CHEN G F, WANG Z W, et al. Multi-objective design optimization of stent-grafts for the aortic arch[J]. Materials & Design, 2023, 227: 4-9.
[1] 岳航, 鹿超, 王春红, 李瀚宇. 基于主要化学成分的红麻与大麻拉伸强度预测[J]. 纺织学报, 2025, 46(08): 62-70.
[2] 高闻语, 陈诚, 奚晓玮, 邓林红, 刘杨. 改性丝素蛋白纤维增强胶原基角膜修复材料的制备及其性能[J]. 纺织学报, 2025, 46(08): 1-9.
[3] 梁锋, 方沿, 张伟华, 唐余玲, 李双洋, 周建飞, 石碧. 基于金属-多酚网络的胶原蛋白基纤维制备及其力学性能[J]. 纺织学报, 2025, 46(08): 10-17.
[4] 陈晴宇, 陆春红, 张斌, 晋义凯, 黄琪帏, 王超, 丁彬, 俞建勇, 王先锋. 碳纤维增强水泥基灌浆料的制备及其性能[J]. 纺织学报, 2025, 46(08): 120-126.
[5] 刘宇祥, 乌婧, 徐锦龙, 谢锐敏, 王华平. 阳离子可染聚对苯二甲酸丙二醇酯预取向丝的制备及其性能[J]. 纺织学报, 2025, 46(07): 46-52.
[6] 朱雷, 李晓俊, 程春祖, 徐纪刚, 杜心宇. 四硼酸钠/单宁酸交联对海藻酸钙纤维结构与性能的影响[J]. 纺织学报, 2025, 46(07): 28-36.
[7] 王惠婷, 陈宇鉴, 刘诗仪, 张显涛, 陆斌, 邹专勇, 王建, 张寅江. 海藻酸盐基非织造医用敷料的研究进展[J]. 纺织学报, 2025, 46(06): 240-249.
[8] 丁凯, 符芬, 张智翔, 杨语童, 李超婧, 赵帆, 王璐, 王富军. 按压排尿用针织人工膀胱的设计及其力学性能[J]. 纺织学报, 2025, 46(05): 169-178.
[9] 符芬, 王钰涵, 丁凯, 赵帆, 李超靖, 王璐, 曾泳春, 王富军. 纤维素基止血材料的研究进展[J]. 纺织学报, 2025, 46(04): 226-234.
[10] 李金键, 薛元, 陈宥融. 时序分布的段彩竹节纱及三通道转杯成纱工艺设计[J]. 纺织学报, 2025, 46(03): 72-81.
[11] 宋婉萌, 王宝弘, 孙宇, 杨家祥, 刘云, 王玉忠. 兼具力学性能与高效阻燃性能粘胶织物的制备及其性能[J]. 纺织学报, 2025, 46(02): 188-196.
[12] 卢海龙, 于影, 左雨欣, 王浩然, 陈洪立, 汝欣. 取向增强抗CO2腐蚀纤维薄膜的制备及其性能[J]. 纺织学报, 2024, 45(12): 33-40.
[13] 李沂蒙, 单梦琪, 李雯昕, 周奉凯, 毛吉富, 王富军, 王璐. 聚吡咯基可拉伸导电心肌补片的制备及其电传导性能[J]. 纺织学报, 2024, 45(12): 89-97.
[14] 杨鑫, 张昕, 潘志娟. 丝素纳米原纤增强再生丝素蛋白/聚乙烯醇纤维的结构与性能[J]. 纺织学报, 2024, 45(11): 1-9.
[15] 缪璐璐, 孟小奕, 董正梅, 彭倩, 何林伟, 邹专勇. 热处理工艺对喷气涡流纺低熔点涤纶长丝包芯纱力学性能的影响[J]. 纺织学报, 2024, 45(11): 73-79.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!