纺织学报 ›› 2025, Vol. 46 ›› Issue (10): 46-53.doi: 10.13475/j.fzxb.20250203701

• 纤维材料 • 上一篇    下一篇

未水洗与粗水洗羽毛绒快速检测方法

周小叶1,2, 曹爱玲3(), 苏日娜3, 石文军4, 赵仙梅5, 杜达生6, 蔡路昀1,2   

  1. 1.浙江大学 宁波国际科创中心, 浙江 宁波 315100
    2.浙江大学 生物系统工程与食品科学学院, 浙江 杭州 310058
    3.杭州海关丝类检测中心, 浙江 杭州 310007
    4.青岛海关技术中心, 山东 青岛 266001
    5.浙江柳桥实业有限公司, 浙江 杭州 311200
    6.浙江三星羽绒股份有限公司, 浙江 杭州 311200
  • 收稿日期:2025-02-20 修回日期:2025-04-18 出版日期:2025-10-15 发布日期:2025-10-15
  • 通讯作者: 曹爱玲(1981—),女,高级兽医师,硕士。主要研究方向为动物检验检疫。E-mail:caoailing2002@163.com
  • 作者简介:周小叶(2000—),女,硕士生。主要研究方向为动物食品检测及活性成分分析。
  • 基金资助:
    国家海关总署科技项目(2022HK106);国家海关总署科技项目(2024HK306);国家海关总署科技项目(2023HK077)

Rapid detection method for unwashed and inadequately washed feather and down

ZHOU Xiaoye1,2, CAO Ailing3(), SU Rina3, SHI Wenjun4, ZHAO Xianmei5, DU Dasheng6, CAI Luyun1,2   

  1. 1. Ningbo Global Innovation Center, Zhejiang University, Ningbo, Zhejiang 315100, China
    2. College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
    3. Silk Inspection Center of Hangzhou Customs District, Hangzhou, Zhejiang 310007, China
    4. Technology Center of Qingdao Customs, Qingdao, Shandong 266001, China
    5. Zhejiang Liuqiao Industrial Co., Ltd., Hangzhou, Zhejiang 311200, China
    6. Zhejiang Samsung Down Co., Ltd., Hangzhou, Zhejiang 311200, China
  • Received:2025-02-20 Revised:2025-04-18 Published:2025-10-15 Online:2025-10-15

摘要:

针对进口粗水洗羽毛绒监管中存在的鉴别难题,建立未水洗与粗水洗羽毛绒的快速检测方法,采用差示扫描量热法(DSC)为核心检测手段,结合热重分析(TG)、X射线衍射(XRD)及红外光谱分析进行方法验证,选取自然风干及80~160 ℃热处理的粗水洗羽毛绒样品,系统分析其角蛋白热稳定性、晶体结构及二级结构变化特征,最后通过对比白鸭毛、灰鸭毛及其羽绒制品的DSC曲线差异,建立特征峰识别体系。TG结果显示羽毛绒热分解呈现水分蒸发、角蛋白降解和残余分解三阶段特征;XRD证实热处理引起角蛋白晶体结构重构;红外光谱定量分析表明样品粗水洗后β-折叠结构比例增加,无规卷曲结构减少;DSC检测显示白鸭毛、白鸭绒和灰鸭绒粗水洗样品在170~220 ℃区间产生明显特征峰。基于DSC曲线特征峰差异,建立了一种快速检测方法,用于区分未水洗与粗水洗羽毛绒,该方法可定性分析80~140 ℃热处理对羽毛角蛋白结构的影响,为海关监管及行业标准修订提供了技术支撑。

关键词: 粗水洗羽毛绒, 未水洗羽毛绒, 差示扫描热量法, 羽毛绒角蛋白结构, 羽绒

Abstract:

Objective The global trade of substandard feather and down products, particularly those subjected to inadequate washing processes, poses significant challenges to customs inspection and epidemic prevention. Existing standards like GB/T 17685—2016 fail to address the identification of these substandard products, which lack sufficient hygiene and structural stability. This study aimed to establish a rapid, reliable detection method based on differential scanning calorimetry (DSC) to distinguish unwashed and inadequately washed feather and down by characterizing heat-induced keratin conformational changes, thereby providing technical support for regulatory standard revisions.

Method Thermogravimetry (TG), X-Ray Diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC) were employed to compare the thermal stability of feather and down samples. For sample preparation, unwashed samples (white/grey duck feather and down) were subjected to natural air-drying or heat treatments (80-160 ℃ for 30 min). TG was employed to quantify the mass loss across 30-800 ℃ (10 ℃/min, N2 atmosphere) for unwashed and heat-treated (80-160 ℃, 30 min) white/grey duck feather/down. XRD (5°-25°, 5(°)/min) and FT-IR (4 000-400 cm-1, 4 cm-1 resolution) results were examined to analyze the crystal structure evolution and secondary structural transitions (β-sheet, α-helix, random loops). As the core technique for capturing thermal behavior details, DSC (5 ℃/min to 550 ℃, N2 flow) played a critical role in establishing distinct thermal fingerprints for all 24 sample groups (4 types and 6 treatments), focusing on endothermic peak variations correlated with keratin denaturation. Data were processed using NETZSCH Proteus and Origin 2022, with statistical validation of structural parameters.

Results TG analysis revealed three-phase decomposition of feather and down, which are moisture evapora-tion (30-200 ℃), keratin degradation (200-400 ℃), and residual decomposition (400-800° C). For structural transitions, XRD revealed that 120 ℃ treatment increased α-helix and β-sheet diffraction intensity in white feather, while 160 ℃ reduced α-helix and β-sheet peaks in grey feather. FT-IR deconvolution showed that inadequate washing elevated β-sheet content and eliminated random loops, confirming molecular rearrangement into stable hydrogen-bonded networks. DSC results indicated that unwashed samples exhibited broad moisture evaporation peaks at (83.2-91.7)℃. After heat treatment, peak positions shifted or disappeared. 80-140 ℃ treatments induced distinct β-sheet denaturation peaks within 170-220 ℃. Specifically, 160 ℃ treatment caused structural disorder, reducing enthalpy and peak broadening. Meanwhile, grey feather displayed similar trends but varied in peak intensity due to structural differences.

Conclusion In this study, the thermochemical properties of inadequately washed and unwashed feather/down were investigated through TG, XRD, FT-IR, and DSC analysis. The study concluded that heat treatment is a key factor affecting the thermal properties of down keratin. The DSC results showed that the DSC curves of inadequately washed and unwashed feather/down are different, and unwashed and inadequately washed feather/down can be distinguished by the characteristic peaks on the DSC curves. The DSC method effectively distinguishes unwashed and inadequately washed feather/down based on thermal transition differences. This method requires minimal sample preparation (10 mg) and provides results within 1 h, offering a rapid and reliable solution for customs inspection and quality control. The findings support the revision of GB/T 17685—2016 to include thermal analysis criteria, enhancing the regulation of substandard products in the global down industry.

Key words: inadequately washed feather and down, unwashed feather and down, differential scanning calorimetry, keratin structure of feather and down, down

中图分类号: 

  • S851.34

图1

白鸭毛和灰鸭毛XRD曲线"

图2

鸭毛红外光谱解卷积分析"

表1

由FT-IR解卷积曲线得出的鸭毛二级结构含量"

鸭毛
编号
含量/%
α-螺旋 β-折叠 β-转角 无规则
1号 19.83 41.97 14.06 24.14
4号 19.11 66.63 14.26 0
13号 20.21 41.38 14.46 23.94
16号 20.04 63.95 16.02 0

图3

鸭毛热重和失重速率曲线"

图4

鸭毛鸭绒DSC曲线"

表2

鸭毛DSC曲线的热分析结果"

样品
编号
峰1 峰2
峰值/
热流率/
(mW·mg-1)
峰面
峰值/
热流率/
(mW·mg-1)
峰面
1 83.2 0.588 7 224.2 228.9 0.506 7 6.074
2 178.6 4.305 0 115.1 225.6 0.440 8 10.62
3 183.4 2.808 0 99.7 226.8 0.495 5 8.468
4 180.5 2.250 0 82.81 222.5 0.583 1 22.38
5 218.0 1.907 0 72.56
6 156.2 0.881 7 110.6 220.0 0.601 4 16.96
7 91.7 0.760 4 299 233.5 0.839 8 28.79
8 187.4 2.680 0 71.67 222.5 0.656 4 18.49
9 189.5 2.579 0 74.69 222.7 0.481 8 9.9
10 198.1 2.990 0 55.82 229.7 0.896 4 21.07
11 203.4 2.274 0 105.3
12 63.8 0.780 8 155.8 236.1 0.856 2 39.22
13 176.8 1.145 0 92.69 226.7 0.380 8 12.94
14 179.2 3.450 0 96.95 227 0.510 2 19.29
15 192.3 2.013 0 72.86 226.7 0.412 5 7.094
16 197.0 1.005 0 86.16
17 119.8 0.508 4 213.6 227.6 0.584 2 15.85
18 82.2 0.496 9 183.7 228.6 0.579 9 5.568
19 74.8 0.766 5 273.8 236.1 0.614 6 32.47
20 120.3 0.536 9 205.4 227.5 0.74 48.39
21 194.5 2.962 0 95.99
22 167.7 2.478 0 77.43 226.7 0.624 7 17.56
23 212.2 1.731 0 62.31
24 181.6 1.255 0 59.01 224.9 0.670 3 21.33

图5

白鸭毛DSC曲线(10 ℃/min)"

[1] 徐浩, 曹爱玲, 于力, 等. 我国羽绒毛进出口贸易现状与海关检疫监管措施[J]. 中国动物检疫, 2024, 41(6): 90-96.
XU Hao, CAO Ailing, YU Li, et al. Import and export trade of down feather and quarantine supervision by customs in China[J]. China Animal Health Inspection, 2024, 41(6): 90-96.
[2] KURIL A K. Differential scanning calorimetry: a powerful and versatile tool for analyzing proteins and peptides[J]. Journal of Pharmaceutical Research International, 2024, 36(7): 179-187.
doi: 10.9734/jpri/2024/v36i77549
[3] 刘功明, 孙京新, 徐幸莲, 等. 差示扫描量热法检测猪、牛、羊肉加热终点温度[J]. 中国农业科学, 2015, 48(6): 1186-1194.
doi: 10.3864/j.issn.0578-1752.2015.06.14
LIU Gongming, SUN Jingxin, XU Xinglian, et al. Detection of endpoint temperature of pork, beef and mutton by differential scanning calorimetry[J]. Scientia Agricultura Sinica, 2015, 48(6): 1186-1194.
doi: 10.3864/j.issn.0578-1752.2015.06.14
[4] BERTRAM H C, WU Z Y, VAN DEN BERG F, et al. NMR relaxometry and differential scanning calorimetry during meat cooking[J]. Meat Science, 2006, 74(4): 684-689.
doi: 10.1016/j.meatsci.2006.05.020 pmid: 22063224
[5] 陆英, 王黎明, 张振华, 等. 羽绒纤维的结构及理化性能研究进展[J]. 上海纺织科技, 2015, 43(11): 6-8, 36.
LU Ying, WANG Liming, ZHANG Zhenhua, et al. The research progress of feather fiber structure and its physical and chemical properties[J]. Shanghai Textile Science & Technology, 2015, 43(11): 6-8, 36.
[6] 向宇, 周爱晖, 王思翔, 等. 基于拉曼光谱的羊毛二硫键及构象含量分析[J]. 纺织学报, 2024, 45(2): 45-51.
XIANG Yu, ZHOU Aihui, WANG Sixiang, et al. Analysis of disulfide bonds and conformational content of wool based on Raman spectroscopy[J]. Journal of Textile Research, 2024, 45(2): 45-51.
[7] 李长龙, 汤立洋, 王宗乾, 等. 不同体系下羽毛绒的溶解性能及光谱特性[J]. 纺织学报, 2017, 38(4): 27-31.
LI Changlong, TANG Liyang, WANG Zongqian, et al. Solubility and spectral characteristic of feather and down in different dissolution systems[J]. Journal of Textile Research, 2017, 38(4): 27-31.
[8] LIU X, GU S J, XU W L. Thermal and structural characterization of superfine down powder[J]. Journal of Thermal Analysis and Calorimetry, 2013, 111(1): 259-266.
doi: 10.1007/s10973-012-2202-0
[9] WORTMANN F J, STAPELS M, ELLIOTT R, et al. The effect of water on the glass transition of human hair[J]. Biopolymers, 2006, 81(5): 371-375.
pmid: 16358248
[10] ÉHEN Z, NOVÁK C, SZTATISZ J, et al. Thermal characterization of hair using TG-MS combined thermoanalytical technique[J]. Journal of Thermal Analysis and Calorimetry, 2004, 78(2): 427-440.
doi: 10.1023/B:JTAN.0000046108.29225.b2
[11] FRANCIOSO A, PUNZI P, BOFFI A, et al. β-sheet interfering molecules acting against β-amyloid aggregation and fibrillogenesis[J]. Bioorganic & Medicinal Chemistry, 2015, 23(8): 1671-1683.
doi: 10.1016/j.bmc.2015.02.041
[12] TAKAHASHI K, YAMAMOTO H, YOKOTE Y, et al. Thermal behavior of fowl feather keratin[J]. Bioscience, Biotechnology, and Biochemistry, 2004, 68(9): 1875-1881.
pmid: 15388962
[13] BRUCE FRASER R D, PARRY D A D. The structural basis of the filament-matrix texture in the avian/reptilian group of hard β-keratins[J]. Journal of Structural Biology, 2011, 173(2): 391-405.
doi: 10.1016/j.jsb.2010.09.020 pmid: 20869443
[14] 吴安成, 宋修彩, 易曙晖, 等. 羽绒(毛)结构和性能研究[J]. 中国纺织大学学报, 1990, 16(2): 94-99.
WU Ancheng, SONG Xiucai, YI Shuhui, et al. The structure and properties of feather and down[J]. Journal of China Textile University, 1990, 16(2): 94-99.
[15] TESFAYE T, SITHOLE B, RAMJUGERNATH D, et al. Valorisation of chicken feathers: characterisation of thermal, mechanical and electrical properties[J]. Sustainable Chemistry and Pharmacy, 2018, 9: 27-34.
doi: 10.1016/j.scp.2018.05.003
[16] WANG B, YANG W, MCKITTRICK J, et al. Keratin: structure, mechanical properties, occurrence in biological organisms, and efforts at bioinspiration[J]. Progress in Materials Science, 2016, 76: 229-318.
doi: 10.1016/j.pmatsci.2015.06.001
[17] KUZUHARA A. Analysis of structural changes in bleached keratin fibers (black and white human hair) using Raman spectroscopy[J]. Biopolymers, 2006, 81(6): 506-514.
pmid: 16425172
[18] 邹涛, 陈宇迪, 莫单丹, 等. 差示扫描量热(DSC)图谱匹配识别法在鱼腥草产地快速鉴别中的应用[J]. 分析仪器, 2022(1): 93-99.
ZOU Tao, CHEN Yudi, MO Dandan, et al. Application of differential scanning calorimetry (DSC) in origin identification of Houttuynia cordata[J]. Analytical Instrumentation, 2022(1): 93-99.
[1] 张莎莎, 蔡牧航, 吕晓静, 胡丹, 刘娟, 吉星照, 曹根阳, 王浩娜. 静电场协同构象羽绒/二氧化硅气凝胶保暖材料[J]. 纺织学报, 2025, 46(07): 10-18.
[2] 卜凡, 应丽丽, 李长龙, 王宗乾. 羽绒在乳酸/半胱氨酸低共熔溶剂中的溶解行为及其机制[J]. 纺织学报, 2023, 44(10): 24-30.
[3] 万颖萍, 王宗乾, 王英沣, 杨海伟, 吴开明, 谢伟. 抗菌羽绒的短流程制备及其性能[J]. 纺织学报, 2023, 44(01): 149-155.
[4] 吴佳玥, 吴巧英. 羽绒制品热传递的有限元仿真[J]. 纺织学报, 2022, 43(11): 154-162.
[5] 张文欢, 江舒, 李俊. 羽绒服装系统的面积因子预测及适用性分析[J]. 纺织学报, 2022, 43(11): 148-153.
[6] 吴黛唯, 黄家成, 王云仪. 服装形变对羽绒服隔热能力的影响[J]. 纺织学报, 2022, 43(09): 167-174.
[7] 应丽丽, 李长龙, 王宗乾, 王邓峰, 吴开明, 谢伟, 程欢. 植酸作用下锆离子修饰羽绒及其保温性能[J]. 纺织学报, 2020, 41(10): 94-100.
[8] 马颜雪, 王世娜, 李毓陵, 温润. 方格立衬结构机织物的一次成形设计实践[J]. 纺织学报, 2020, 41(06): 42-47.
[9] 万旺军 邓同乐 计芬芬 葛建 付贤树 邬佳丽. 羽毛绒种类鉴定及气味检测方法研究[J]. 纺织学报, 2013, 34(3): 15-19.
[10] 周岚;汤利桥;俞杭芳;邵建中;. 灰色羽绒的漂白技术[J]. 纺织学报, 2011, 32(1): 59-66.
[11] 吴刚;赵珊红;王华雄;吴俭俭;郭方龙;王力君;谢维斌;宋保国;叶庆富. 加速溶剂萃取-高效液相色谱测定羽绒羽毛中的烷基苯酚与聚氧乙烯醚[J]. 纺织学报, 2010, 31(3): 72-77.
[12] 刘维;周苏萌;韩仕峰;王府梅. 羽绒/木棉混纤絮料的性能[J]. 纺织学报, 2007, 28(11): 17-20.
[13] 高晶;于伟东;潘宁. 羽绒纤维的形态结构表征[J]. 纺织学报, 2007, 28(1): 1-4.
[14] 高晶;于伟东. 羽绒纤维的吸湿性能[J]. 纺织学报, 2006, 27(11): 28-31.
[15] 张建春;郝新敏;岳素娟;郭玉海. 羽绒絮毡复合PTFE膜保暖材料的研究[J]. 纺织学报, 2004, 25(04): 38-39.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!