纺织学报 ›› 2025, Vol. 46 ›› Issue (11): 155-163.doi: 10.13475/j.fzxb.20250300701

• 染整工程 • 上一篇    下一篇

纤维素纤维孔道吸湿溶胀行为的分子动力学模拟

龙红霞1, 吴伟1, 刘娅岚1, 徐红1,2,3,4, 毛志平1,2,3,4()   

  1. 1.东华大学 化学与化工学院, 上海 201620
    2.东华大学 国家染整工程技术研究中心, 上海 201620
    3.国家先进印染技术创新中心 山东中康国创先进印染技术研究院有限公司, 山东 泰安 271000
    4.东华大学 纺织科技创新中心, 上海 201620
  • 收稿日期:2025-03-05 修回日期:2025-05-14 出版日期:2025-11-15 发布日期:2025-11-15
  • 通讯作者: 毛志平(1969—),男,研究员,博士。主要研究方向为纺织印染清洁加工及功能整理。E-mail:zhpmao@dhu.edu.cn
  • 作者简介:龙红霞(1999—),女,硕士生。主要研究方向为分子动力学模拟在染整基础理论中的应用。
  • 基金资助:
    山东省重点技术研发计划项目(2021ZDPT03);国家自然科学基金项目(22208049);上海市科学技术委员会国际合作基金项目(21130750100)

Molecular dynamics simulation of hygroscopic swelling behavior of porous cellulose fibers

LONG Hongxia1, WU Wei1, LIU Yalan1, XU Hong1,2,3,4, MAO Zhiping1,2,3,4()   

  1. 1. College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
    2. National Engineering Research Center for Dyeing and Finishing of Textiles, Donghua University, Shanghai 201620, China
    3. Shandong Zhongkang Guochuang Research Institute of Advanced Dyeing & Finishing Technology Co., Ltd., National Innovation Center of Advanced Dyeing and Finishing Technology, Taian, Shandong 271000, China
    4. Innovation Center for Textile Science andTechnology, Donghua University, Shanghai 201620, China
  • Received:2025-03-05 Revised:2025-05-14 Published:2025-11-15 Online:2025-11-15

摘要:

为揭示高湿度环境下纤维素纤维溶胀过程中水分布的微观机制,为纤维素纤维活性染料染色时织物含湿率的控制提供理论支持,采用分子动力学模拟方法,构建了经时域核磁实验验证的纤维素纤维孔道模型,系统分析了不同含湿率下孔道的动态溶胀行为。结果表明:水分子优先在晶区与非晶区的界面孔道形成纵向梯度密度分布,并在非晶区均匀渗透;40%~50%含湿率是纤维素结构从孤立孔隙向三维渗透网络转变的临界区间;高含湿率能增强孔道连通性,提高对水分子传质效率,促使其扩散系数呈非线性增长,因此控制织物带液率小于40%能有效抑制活性染料因纤维内部自由水增多而加剧的水解;时域核磁实验与模拟结果一致,显示纤维内部的强结合水比例稳定在0.07%左右,证实了模型的可靠性;低含湿率时,O6/O4位点主导水合作用,而溶胀引发的结构松弛促使低亲和力O2/O3位点的水分子吸附比例显著提高。

关键词: 纤维素纤维, 纤维孔道, 分子动力学模拟, 吸湿溶胀, 含湿率, 时域核磁, 棉织物

Abstract:

Objective Cellulose fibers at high moisture content result in excessive free water content inside the pores of the fibers due to excessive swelling, which leads to increased hydrolysis of reactive dyes and limits the development of dyeing processes with high color fixation rates. Therefore, this study aims to reveal the dynamic swelling mechanism of cellulose at different moisture contents (40%-60%) on an atomic scale using molecular dynamics (MD) simulations, which provides a reference to promote the model construction of cellulose fiber pores and provides theoretical support for the control of fiber moisture content in the process of reactive dye dyeing of cellulose fibers.
Method Equilibrium molecular dynamics simulations were applied to simulate the swelling process of cellulose fiber at different moisture contents of 40%-60%. A cellulose pore model with a crystalline-amorphous-crystalline (CC/AC/CC) sandwich structure was constructed using the CHARMM36 force field and the simulation results were validated by the proportion of bound water measured by TD-NMR (T2 relaxation analysis). The system was simulated in NPT setup. Key metrics include free volume fraction analysis, density profiles, hydrogen bonding and diffusion coefficients. TD-NMR quantification of strongly bound water (0.07%) was performed to verify the accuracy of the simulation. Adsorption site competition was analyzed by radial distribution function and hydroxyl coordination number (O2, O3, O4, O6).
Results An important mechanism of cellulose hygroscopic swelling is revealed from an atomic perspective by integrating TD-NMR and MD simulations. Water molecules preferentially accumulated in the crystalline-amorphous (CC/AC) interface pores, forming a distinct longitudinal density gradient and uniform penetration in the AC region. The maximum increase in free volume fraction and a decrease in cellulose density to 1.081 g/cm3 were observed at moisture contents of 40%-50%, and the increment slowed down as moisture content further increased, suggesting that this moisture content interval is an isolated gap evolving into a connected three-dimensional network. TD-NMR and simulations consistently confirumed that the stable proportion of strongly bound water within the cellulose pores is 0.07%, which confirms the reliability of this model of cellulose pores. At high moisture contents, enhanced pore connectivity improves mass transfer efficiency, while the reduction of localized water clusters drives nonlinear diffusion kinetics with reduced diffusion coefficients. Competition for adsorption sites is related to the moisture level: at low moisture content, O6/O4 hydroxyl sites dominate, while swelling-induced structural relaxation shifts the adsorption predominance to the low-affinity O2/O3 sites.
Conclusion A cellulose pore model was constructed by molecular dynamics simulations and validated it by TD-NMR experiments to reveal the dynamic mechanism of cellulose hygroscopic swelling.The 40%-50% moisture content interval is the critical humidity threshold for cellulose pores to transition from isolated pore structure to three-dimensional network pores, and the nonlinear diffusion kinetics of water molecules is affected by local aggregation effects, thus controlling the fiber with liquid carrying rate at 40% can reduce the hydrolysis of reactive dyes. Competitive adsorption mechanisms (O6/O4→O2/O3) exist for hydration sites on cellulose. The practical significance includes: providing a reference for the construction of a multi-scale model of cellulose fiber pores, reducing the hydrolysis of dyes by controlling the liquid-carrying rate of fabrics which provides a theoretical basis and ideas for optimizing the dyeing process of reactive dyes. Future work is necessary to investigate how the pores of cellulose fibers swell at moisture contents below 40%.

Key words: cellulose fiber, fiber channel, molecular dynamics simulation, hygroscopic swelling, moisture content, time-domain nuclear magnetic resonance, cotton fabric

中图分类号: 

  • TS190.1

图1

纤维素Iβ不同晶面的晶胞模型、结晶区纤维素模型及纤维素不同链端的示意图"

图2

纤维素非晶区的压缩过程模拟快照"

图3

纤维素纤维孔道溶胀模型构建方案示意图"

表1

3种含湿率溶胀模型的体系信息"

含湿率/% 水层厚度/nm 水原子数/个 总原子数/个
40 4 409 248 1 114 770
50 8 749 079 1 454 670
60 12 1 085 427 1 790 955

图4

模拟过程可视化及相关密度计算"

表2

溶胀后3种模型的自由体积及溶剂可及表面积变化"

含湿
率/%
自由体积/
nm3
自由体积
分数
溶剂可及
表面积/nm2
0 32.77 0.126 2 915.398
40 61.47 0.499 3 148.466
50 70.94 0.622 3 125.790
60 75.99 0.688 3 270.586

图5

由时域核磁实验测得的不同含湿率下棉纤维内部的强结合水比例"

表3

由模拟计算得出的不同含湿率下纤维素内部的强结合水分子数量及比例"

含湿
率/%
强结合水分子
数/个
水分子总
数/个
强结合水
比例/%
40 102 136 414 0.073 3
50 174 249 693 0.069 2
60 288 361 809 0.076 2

图6

不同含湿率溶胀模型的水分子的均方位移和水-水相互作用的径向分布函数"

表4

不同含湿率模型中水的均方位移曲线斜率a、相关系数R2及相应的扩散系数D"

含湿率/% a R2 D/(10-10·m2·s-1)
40 0.007 31 0.998 20 1.144
50 0.009 32 0.999 04 1.543
60 0.012 87 0.999 29 1.682

图7

不同含湿率溶胀模型中纤维素纤维孔道所有水合位点的水分子径向分布函数及配位数曲线 注:Ox代表纤维素所有水化部位氧原子,x为2、3、4、5、6;OW代表水分子中的氧原子。"

表5

不同含湿率下纤维素所有水化部位氧原子(Ox)与水分子氧原子(OW)的配位数"

含湿
率/%
配位数
O6-OW O5-OW O4-OW O3-OW O2-OW
40 0.408 0.398 0.421 0.327 0.310
50 0.281 0.245 0.272 0.262 0.267
60 0.287 0.209 0.203 0.267 0.263
[1] 舒大武, 房宽峻, 刘秀明, 等. 活性染料无盐连续轧-蒸与冷轧堆染色效果的比较[J]. 纺织学报, 2018, 39(4): 77-81.
SHU Dawu, FANG Kuanjun, LIU Xiuming, et al. Comparison on dyeing effect of reactive dyes by salt-free continuous pad-steam dyeing and cold pad-batch dyeing[J]. Journal of Textile Research, 2018, 39(4): 77-81.
[2] CONTI A, PALOMBO M, PARMENTIER A, et al. Two-phase water model in the cellulose network of paper[J]. Cellulose, 2017, 24(8): 3479-3487.
doi: 10.1007/s10570-017-1338-2
[3] 赵涛. 染整工艺与原理[M]. 北京: 中国纺织出版社, 2009: 20-24.
ZHAO Tao. Dyeing and finishing technology and principles[M]. Beijing: China Textile & Apparel Press, 2009: 20-24.
[4] 胡蝶, 张婷婷, 胡涵昌, 等. 活性染料在棉纤维上的扩散性能及其影响因素研究[J]. 纤维素科学与技术, 2020, 28(4): 38-45.
HU Die, ZHANG Tingting, HU Hanchang, et al. Diffusion performance of reactive dyes on cotton fiber and the influencing factors[J]. Journal of Cellulose Science and Technology, 2020, 28(4): 38-45.
[5] SALEM K S, NAITHANI V, JAMEEL H, et al. A systematic examination of the dynamics of water-cellulose interactions on capillary force-induced fiber collapse[J]. Carbohydrate Polymers, 2022, 295: 119856.
doi: 10.1016/j.carbpol.2022.119856
[6] 高振华, 顾继友, 李志国. 利用DSC研究异氰酸酯与纤维素的反应机理[J]. 林业科学, 2005, 41(3): 115-120.
GAO Zhenhua, GU Jiyou, LI Zhiguo. The DSC study on the reaction mechanism of isocyanate with cellu-lose[J]. Scientia Silvae Sinicae, 2005, 41(3): 115-120.
[7] MAO Z P, YU H, WANG Y F, et al. States of water and pore size distribution of cotton fibers with different moisture ratios[J]. Industrial & Engineering Chemistry Research, 2014, 53(21): 8927-8934.
doi: 10.1021/ie501071h
[8] 陶德亨, 李新宇, 刘文静, 等. 利用核磁共振技术研究热处理中密度纤维板的吸水性[J]. 安徽农业大学学报, 2018, 45(4): 645-649.
TAO Deheng, LI Xinyu, LIU Wenjing, et al. Water adsorption of heat-treatment medium density fiberboard studied by TD-NMR technique[J]. Journal of Anhui Agricultural University, 2018, 45(4): 645-649.
[9] LIU Y L, WU W, XU H, et al. A fast and effective way to measure the inner pore size distributions of wetted cotton fibers and their pretreatment performance using time-domain nuclear magnetic resonance[J]. International Journal of Biological Macromolecules, 2024, 271: 132781.
doi: 10.1016/j.ijbiomac.2024.132781
[10] SALMÉN L, STEVANIC J S, HOLMQVIST C, et al. Moisture induced straining of the cellulosic micro-fibril[J]. Cellulose, 2021, 28(6): 3347-3357.
doi: 10.1007/s10570-021-03712-1
[11] 陈玉, 江学为. 基于分子动力学模拟的纤维素Ⅱ扩散性质研究[J]. 服饰导刊, 2019, 8(3): 26-30.
CHEN Yu, JIANG Xuewei. Research on diffusion properties of cellulose Ⅱ based on molecular dynamics simulation[J]. Fashion Guide, 2019, 8(3): 26-30.
[12] 刘刚, 张恒, 孙恒, 等. 碱/脲水溶液体系中纤维素包合物构型及纤维素与溶剂分子间相互作用力的分子动力学模拟[J]. 高等学校化学学报, 2018, 39(4): 714-720.
doi: 10.7503/cjcu20170683
LIU Gang, ZHANG Heng, SUN Heng, et al. Molecular dynamics simulation on the structure of cellulose inclusion complexes and interactions between cellulose chains and solvent molecules in alkali/urea aqueous solution[J]. Chemical Journal of Chinese Universities, 2018, 39(4): 714-720.
doi: 10.7503/cjcu20170683
[13] WANG Y X, KIZILTAS A, BLANCHARD P, et al. Surface-grafted cellulose in water: interfacial retention and dynamical ingress of moisture[J]. ACS Applied Polymer Materials, 2022, 4(10): 6985-6993.
doi: 10.1021/acsapm.2c00901
[14] DAN L Y, HUANG Z Y, LI J, et al. Molecular dynamics simulations of performance degradation of cellulose nanofibers (CNFs) under hygrothermal environments[J]. Molecular Simulation, 2020, 46(15): 1172-1180.
doi: 10.1080/08927022.2020.1807541
[15] SAHPUTRA I H, ALEXIADIS A, ADAMS M J. Effects of moisture on the mechanical properties of microcrystalline cellulose and the mobility of the water molecules as studied by the hybrid molecular mechanics-molecular dynamics simulation method[J]. Journal of Polymer Science Part B: Polymer Physics, 2019, 57(8): 454-464.
doi: 10.1002/polb.v57.8
[16] 王雷, 楼雨寒, 童志函, 等. 水合金属盐低共熔溶剂室温溶解纤维素的分子动力学机制[J]. 林业工程学报, 2022, 7(4): 64-71.
WANG Lei, LOU Yuhan, TONG Zhihan, et al. Molecular dynamics mechanism of metal salt hydrate-based deep eutectic solvent to dissolve cellulose at room temperature[J]. Journal of Forestry Engineering, 2022, 7(4): 64-71.
[17] WANG Y X, KIZILTAS A, DREWS A R, et al. Dynamical water ingress and dissolution at the amorphous-crystalline cellulose interface[J]. Biomacromolecules, 2021, 22(9): 3884-3891.
doi: 10.1021/acs.biomac.1c00690 pmid: 34337937
[18] MATTHEWS J F, SKOPEC C E, MASON P E, et al. Computer simulation studies of microcrystalline cellulose Iβ[J]. Carbohydrate Research, 2006, 341(1): 138-152.
doi: 10.1016/j.carres.2005.09.028
[19] VAN DER SPOEL D, LINDAHL E, HESS B, et al. GROMACS: fast, flexible, and free[J]. Journal of Computational Chemistry, 2005, 26(16): 1701-1718.
doi: 10.1002/jcc.20291 pmid: 16211538
[20] GOMES T C F, SKAF M S. Cellulose-Builder: a toolkit for building crystalline structures of cellulose[J]. Journal of Computational Chemistry, 2012, 33(14): 1338-1346.
doi: 10.1002/jcc.22959 pmid: 22419406
[21] MARTÍNEZ L, ANDRADE R, BIRGIN E G, et al. PACKMOL: a package for building initial configurations for molecular dynamics simulations[J]. Journal of Computational Chemistry, 2009, 30(13): 2157-2164.
doi: 10.1002/jcc.21224 pmid: 19229944
[22] WOODS R J, DWEK R A, EDGE C J, et al. Molecular mechanical and molecular dynamic simulations of glycoproteins and oligosaccharides. 1. GLYCAM_93 parameter development[J]. The Journal of Physical Chemistry, 1995, 99(11): 3832-3846.
doi: 10.1021/j100011a061
[23] JORGENSEN W L, CHANDRASEKHAR J, MADURA J D, et al. Comparison of simple potential functions for simulating liquid water[J]. The Journal of Chemical Physics, 1983, 79(2): 926-935.
doi: 10.1063/1.445869
[24] ZHIVOTOVSKII L A. Computer models of quantitative characteristics in genetics: communication II. dynamics of the frequency of alleles with different types of selection[J]. Soviet Genetics, 2004, 87: 937-941.
[25] DASHTIMOGHADAM E, BAHLAKEH G, SALIMI-KENARI H, et al. Rheological study and molecular dynamics simulation of biopolymer blend thermogels of tunable strength[J]. Biomacromolecules, 2016, 17(11): 3474-3484.
pmid: 27766854
[26] HESS B, BEKKER H, BERENDSEN H J C, et al. LINCS: a linear constraint solver for molecular simulations[J]. Journal of Computational Chemistry, 1997, 18(12): 1463-1472.
doi: 10.1002/(ISSN)1096-987X
[27] DARDEN T, YORK D, PEDERSEN L. Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems[J]. The Journal of Chemical Physics, 1993, 98(12): 10089-10092.
doi: 10.1063/1.464397
[28] MAZEAU K. The hygroscopic power of amorphous cellulose: a modeling study[J]. Carbohydrate Polymers, 2015, 117: 585-591.
doi: 10.1016/j.carbpol.2014.09.095 pmid: 25498674
[29] MAO X D, ZHONG Y, XU H, et al. A novel low add-on technology of dyeing cotton fabric with reactive dyestuff[J]. Textile Research Journal, 2018, 88(12): 1345-1355.
doi: 10.1177/0040517517700195
[1] 张帆, 蔡再生, 刘慧景, 陆少锋, 黄旭明. 高牢固光致变色棉织物的点击化学法制备及其性能[J]. 纺织学报, 2025, 46(11): 196-202.
[2] 王子涵, 李勇, 陈晓川, 汪军, 梁凌杰. 废旧棉织物破碎加工过程的建模与仿真[J]. 纺织学报, 2025, 46(07): 136-143.
[3] 赵强强, 王韩星, 张奉轩, 何瑾馨, 周俊, 周兆昌, 董霞. 聚六亚甲基双胍盐酸盐改性对棉织物耐日晒色牢度的影响[J]. 纺织学报, 2025, 46(04): 109-118.
[4] 黄春月, 黄鑫, 杜海娟, 徐文杰, 杨雪梅, 万科研, 李旭, 高杰. 钼氧簇复合物整理剂制备及其整理棉织物的防紫外线性能[J]. 纺织学报, 2025, 46(04): 138-145.
[5] 廖喜林, 曾媛, 刘淑萍, 李亮, 李淑静, 刘让同. 磷/氮/硅复配协效阻燃棉织物制备及其性能[J]. 纺织学报, 2025, 46(03): 151-157.
[6] 张洁, 郭鑫源, 关晋平, 程献伟, 陈国强. 磷/氮阻燃剂原位沉积对棉织物的耐久阻燃改性[J]. 纺织学报, 2025, 46(02): 180-187.
[7] 袁华彬, 王沂沨, 王家朋, 向永翾, 陈国强, 邢铁玲. 基于山嵛酸和ZIF-8改性的超疏水防结冰棉织物[J]. 纺织学报, 2025, 46(02): 197-206.
[8] 巢探宇, 叶韵, 李娜, 廖思含, 马琪凯, 崔莉. 基于脂肪酶固定化的棉织物易去油污整理及其应用[J]. 纺织学报, 2025, 46(01): 130-137.
[9] 武浩, 周嫦娥, 高振清, 冯嘉禾. 基于还原-氧化体系的活性染料染色棉织物剥色[J]. 纺织学报, 2024, 45(12): 128-136.
[10] 王心雨, 郭明明, 张乐乐, 郑伟杰, AMJAD Farooq, 王宗乾. 耐久性抗菌超疏水棉织物的制备及其性能[J]. 纺织学报, 2024, 45(11): 170-177.
[11] 肖渊, 童垚, 胡呈安, 武贤军, 杨磊鹏. 导电复合材料涂覆式全织物基柔性压阻传感器制备[J]. 纺织学报, 2024, 45(10): 152-160.
[12] 张应秀, 徐丽慧, 潘虹, 姚程健, 赵红, 窦梅冉, 沈勇, 赵诗怡. 基于甘蔗渣多孔碳的超疏水棉织物制备及其性能[J]. 纺织学报, 2024, 45(10): 161-169.
[13] 赵强, 刘正江, 高晓平, 张云婷, 张宏. 蒙脱土协同TiO2整理棉织物的功能性[J]. 纺织学报, 2024, 45(09): 121-128.
[14] 刘慧, 李平, 朱平, 刘云. γ-脲基丙基三乙氧基硅烷/苯基膦酸阻燃抗菌棉织物的制备及其性能[J]. 纺织学报, 2024, 45(08): 205-214.
[15] 赵攀, 谭文丽, 赵心蕊, 付金凡, 刘成显, 袁久刚. 基于离子液体微溶焊接的可降解薄膜制备及其性能[J]. 纺织学报, 2024, 45(08): 89-98.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!