纺织学报 ›› 2020, Vol. 41 ›› Issue (09): 95-101.doi: 10.13475/j.fzxb.20191003007

• 染整与化学品 • 上一篇    下一篇

C.I.分散棕19在超临界CO2及水中溶解性的分子动力学模拟

王纯怡1,2, 吴伟1,2, 王健3, 徐红1,2,4, 毛志平1,2,4,5()   

  1. 1.东华大学 生态纺织教育部重点实验室, 上海 201620
    2.东华大学 化学化工与生物工程学院, 上海 201620
    3.青岛即发集团股份有限公司, 山东 青岛 266000
    4.东华大学 纺织科技创新中心, 上海 201620
    5.上海安诺其集团股份有限公司, 上海 201703
  • 收稿日期:2019-10-15 修回日期:2020-04-30 出版日期:2020-09-15 发布日期:2020-09-25
  • 通讯作者: 毛志平
  • 作者简介:王纯怡(1995—),女,硕士生。主要研究方向为分子动力学模拟研究染色理论。
  • 基金资助:
    山东省重点研发技术项目(2019JZZY010406)

Molecular dynamics simulation of solubility of C.I. Disperse Brown 19 in supercritical CO2 and water

WANG Chunyi1,2, WU Wei1,2, WANG Jian3, XU Hong1,2,4, MAO Zhiping1,2,4,5()   

  1. 1. Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620, China
    2. College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
    3. Jifa Group Co., Ltd., Qingdao, Shandong 266000, China
    4. Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
    5. Anoky Group Co., Ltd., Shanghai 201703, China
  • Received:2019-10-15 Revised:2020-04-30 Online:2020-09-15 Published:2020-09-25
  • Contact: MAO Zhiping

摘要:

为探究分散染料在超临界CO2和水中各自染色条件下的溶解性,基于分子动力学模拟,采用热力学积分方法分别计算了C.I.分散棕19在2种溶剂中的溶解自由能和结合自由能,并采用平均非键相互作用方法分析了C.I.分散棕19染料分子与2种溶剂分子间的弱相互作用类型及稳定性。模拟结果表明:C.I.分散棕19染料分子在超临界CO2(24 MPa,130 ℃)和水(0.25 MPa,130 ℃)中的自由能绝对值均较小且相差不大,但其在超临界CO2中的溶解自由能绝对值稍小,结合自由能绝对值稍大;C.I.分散棕19染料分子与2种溶剂分子间均只存在较弱且不稳定的范德华色散作用,但其与超临界CO2分子间的弱相互作用相对于水更不稳定。

关键词: 分散染料, 超临界CO2, 自由能, 溶解性, 分子动力学模拟

Abstract:

In order to explore the solubility differences of disperse dyes in supercritical CO2 and water under their dyeing conditions, the solvation free energy and the binding free energy of C.I. Disperse Brown 19 in these two solvents were syudied, based on the molecular dynamics simulation, using thermodynamic integration method respectively, and the weak interaction between dye molecules and solvent molecules was examined by average noncovalent interaction method. The results showed that the absolute values of free energy of C.I. Disperse Brown 19 dye molecules in supercritical CO2 (24 MPa, 130 ℃) and water (0.25 MPa, 130 ℃) were small, whereas the absolute value of solvation free energy in supercritical CO2 was slightly less than that in water, and the absolute value of binding free energy was slightly greater than in water. The interactions (van der Waals force) between C.I. Disperse Brown 19 dye molecules and supercritical CO2 molecules and water molecules were both weak and unstable, and,the interactions between the dye molecule and the supercritical CO2 molecules were more unstable than that with water molecules.

Key words: disperse dyes, supercritical CO2, free energy, solubility, molecular dynamics simulation

中图分类号: 

  • O647.9

图1

C.I.分散棕19化学结构式"

表1

自由能计算的模拟设定"

体系 溶剂 染料
分子
个数
溶剂
分子
个数
盒子
边长/nm
压力/
MPa
温度/
超临界CO2 1 1 356 3.5 24.00 130
H2O 0.25 130
超临界CO2 2 4 016 5.0 24.00 130
H2O 0.25 130

图2

自由能计算的初始构型"

表2

弱相互作用分析的模拟设定"

体系 溶剂 盒子边长/nm 压力/MPa 温度/℃
超临界CO2 3.5 24.00 130
H2O 3.5 0.25 130

图3

弱相互作用分析的初始构型"

表3

C.I.分散棕19在超临界CO2及水中的自由能"

体系 溶剂 压力/
MPa
温度/
ΔGsol/
(kJ·mol-1)
ΔGbind/
(kJ·mol-1)
Ⅰ-1 超临界
CO2
24.00 130 -45.12±0.20 -9.76±0.42
Ⅰ-2 -47.43±0.17 -9.37±0.32
Ⅰ-3 -47.03±0.11 -9.13±1.57
Ⅱ-1 H2O 0.25 130 -55.99±0.54 -8.73±1.50
Ⅱ-2 -55.69±0.86 -8.80±1.57
Ⅱ-3 -55.77±0.78 -9.12±1.78

图4

C.I.分散棕19在超临界CO2及水中的弱相互作用分析(等值面=0.35)"

图5

C.I.分散棕19在超临界CO2及水中的弱相互作用稳定性分析(等值面=0.35)"

表4

不同分散染料在超临界CO2和水中的实验溶解度数据"

溶剂 染料 压力/
MPa
温度/
溶解度/
(mol·mol-1)
参考
文献
超临界
CO2
分散橙30 12~24 60~120 1.2×10-8~
6.8×10-6
[6]
分散蓝79 12~24 60~120 0.7×10-8~
3.7×10-6
[6]
分散红167 12~24 60~120 0.9×10-8~
2.1×10-6
[6]
分散橙25 10~30 50~110 1.9×10-9~
1.7×10-5
[7]
分散蓝354 10~30 50~110 0.6×10-8~
4.4×10-5
[7]
分散红73 15~30 70~110 3.0×10-6~
3.0×10-5
[8]
分散黄119 15~30 80~120 1.6×10-8~
1.9×10-7
[9]
分散红343 15~30 80~120 3.8×10-9~
3.5×10-6
[9]
分散紫28 12~25 50~110 0.5×10-7~
5.2×10-6
[27]
分散红60 15~34 40~150 1.0×10-6~
3.9×10-5
[28]
分散橙3 0.1 60~90 2.2×10-7~
1.1×10-6
[29]
分散红19 0.1 60~90 2.1×10-7~
1.7×10-6
[29]
分散蓝14 0.1 60~90 1.4×10-7~
3.2×10-7
[29]
分散蓝26 0.1 60~90 2.4×10-8~
1.1×10-6
[29]
分散红11 0.1 60~90 4.4×10-7~
1.0×10-6
[29]
分散黄54 120 0.4×10-6 [10]
分散黄82 130 3.8×10-7 [10]
分散橙30 130 1.6×10-6 [10]
分散红82 130 3.9×10-6 [10]
分散黄114 130 0.8×10-6 [10]
[1] 侯爱芹, 戴瑾瑾. 分散染料在超临界CO2中上染涤纶的研究[J]. 纺织学报, 2004,25(5):17-19.
HOU Aiqin, DAI Jinjin. Study on dyeing properties of polyester with disperse dyes in supercritical carbon dioxide[J]. Journal of Textile Research, 2004,25(5):17-19
[2] 鲁雪燕. 新型环保三原色分散染料在超临界CO2中溶解度的测定与关联研究[D]. 杭州:浙江工业大学, 2009: 14-15.
LU Xueyan. Measurement and correlation of solubilities of the new environment-friendly trichromatic disperse dyes in supercritical carbon dioxide[D]. Hangzhou: Zhejiang University of Technology, 2009: 14-15.
[3] 郑金花. 分散红54在超临界CO2/共溶剂中溶解度的测定与关联[D]. 杭州:浙江工业大学, 2010: 10-12.
ZHENG Jinhua. Measurement correlation of solubilities of Disperse Red 54 in supercritical carbon dioxide with cosolvent[D]. Hangzhou: Zhejiang University of Technology, 2010: 10-12.
[4] 林春绵, 宋赛赛, 刘建峰. 分散染料在超临界CO2中的溶解性研究进展[J]. 印染, 2005(16):46-50.
LIN Chunmian, SONG Saisai, LIU Jianfeng. Progress in solubility of disperse dyes in supercritical carbon dioxide[J]. China Dyeing & Finishing, 2005(16):46-50.
[5] 余志成, 林鹤鸣. 分散蓝79在超临界CO2中的溶解特性及染色行为[J]. 纺织学报, 2006,27(6):51-54.
YU Zhicheng, LIN Heming. Solubility and dyeing performance of Disperse Blue 79 in supercritical carbon dioxide[J]. Journal of Textile Research, 2006,27(6):51-54.
[6] KONG X, HUANG T, CUI H, et al. Multicomponent system of trichromatic disperse dye solubility in supercritical carbon dioxide[J]. Journal of CO2 Utilization, 2019,33:1-11.
[7] SHINODA T, TAMURA K. Solubilities of CI Disperse Orange 25 and CI Disperse Blue 354 in supercritical carbon dioxide[J]. Journal of Chemical and Engineering Data, 2003,48(4):869-873.
[8] DONG P, XU M, LU X, et al. Measurement and correlation of solubilities of CI Disperse Red 73, CI Disperse Yellow 119 and their mixture in supercritical carbon dioxide[J]. Fluid Phase Equilibria, 2010,297(1):46-51.
[9] 宋赛赛. 分散染料在超临界CO2染色中的溶解性及分配性研究[D]. 杭州:浙江工业大学, 2006: 22-46.
SONG Saisai. Solubility and partition of disperse dyes in supercritical carbon dioxide dyeing[D]. Hangzhou: Zhejiang University of Technology, 2006: 22-46.
[10] FERUS-COMELO M. A new method to measure the solubility of disperse dyes in water at high tempera-ture[J]. Coloration Technology, 2015,131(4):269-271.
[11] DATYNER A. The solubilization of disperse dyes by dispersing agents at 127 ℃[J]. Journal of the Society of Dyers and Colourists, 1978,94(6):256-260.
doi: 10.1111/(ISSN)1478-4408b
[12] PRIKRYL J, RUZICKA J, BURGERT L. A new method of determining the solubility of disperse dyes[J]. Journal of the Society of Dyers and Colourists, 1979,95(10):349-351.
doi: 10.1111/(ISSN)1478-4408b
[13] 何玉宏. 高温分散剂的合成及其对分散染料的染色应用[D]. 上海:东华大学, 2018: 1-10.
HE Yuhong. Synthesis of high temperature dispersants and their application to dyes[D]. Shanghai: Donghua University, 2018: 1-10.
[14] CHAMI F, WILSON M R. Molecular order in a chromonic liquid crystal: a molecular simulation study of the anionic azo dye sunset yellow[J]. Journal of The American Chemical Society, 2010,132(22):7794-7802.
doi: 10.1021/ja102468g pmid: 20469909
[15] PETRENKO V E, ANTIPOVA M L, GURINA D L. Solvation of salicylic acid in pure, methanol-modified and water-modified supercritical carbon dioxide: molecular dynamics simulation[J]. The Journal of Supercritical Fluids, 2015,104:227-233.
doi: 10.1016/j.supflu.2015.06.016
[16] JORGENSEN W L, MAXWELL D S, TIRADO-RIVES J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids[J]. Journal of The American Chemical Society, 1996,118(45):11225-11236.
doi: 10.1021/ja9621760
[17] HARRIS J G, YUNG K H. Carbon dioxide's liquid-vapor coexistence curve and critical properties as predicted by a simple molecular model[J]. The Journal of Physical Chemistry C, 1995,99(31):12021-12024.
[18] WANG J, ZHONG H, FENG H, et al. Molecular dynamics simulation of diffusion coefficients and structural properties of some alkylbenzenes in supercritical carbon dioxide at infinite dilution[J]. Journal of Chemical Physics, 2014,140(10):104501.
[19] PIPOLO S, BENASSI E, BRANCOLINI G, et al. First-principle-based MD description of azobenzene molecular rods[J]. Theoretical Chemistry Accounts, 2012,131(10):1274.
doi: 10.1007/s00214-012-1274-z
[20] DODDA L S, VILSECK J Z, CUTRONA K J, et al. Evaluation of CM5 charges for nonaqueous condensed-phase modeling[J]. Journal of Chemical Theory and Computation, 2015,11(9):4273-4282.
doi: 10.1021/acs.jctc.5b00414 pmid: 26575922
[21] MOBLEY D L, CHODERA J D, DILL K A. On the use of orientational restraints and symmetry corrections in alchemical free energy calcula-tions[J]. The Journal of Chemical Physics, 2006,125(8):084902.
doi: 10.1063/1.2221683 pmid: 16965052
[22] POHORLLE A, JARZYNSKI C, CHIPOT C. Good practices in free-energy calculations[J]. The Journal of Physical Chemistry B, 2010,114(32):10235-10253.
doi: 10.1021/jp102971x pmid: 20701361
[23] BORESCH S, TETTINGER F, LEITGEB M, et al. Absolute binding free energies: a quantitative approach for their calculation[J]. The Journal of Physical Chemistry B, 2003,107(35):9535-9551.
doi: 10.1021/jp0217839
[24] KLIMOVICH P V, SHIRTS M R, MOBLEY D L. Guidelines for the analysis of free energy calcula-tions[J]. Journal of Computer-Aided Molecular Design, 2015,29(5):397-411.
doi: 10.1007/s10822-015-9840-9 pmid: 25808134
[25] JOHNSON E R, KEINAN S, MORI-SANCHEZ P, et al. Revealing noncovalent interactions[J]. Journal of The American Chemical Society, 2010,132(18):6498-506.
doi: 10.1021/ja100936w pmid: 20394428
[26] 胡金花, 闫俊, 李红, 等. 分散红11在超临界二氧化碳中的溶解度及其模型拟合[J]. 纺织学报, 2019,40(8):80-84.
HU Jinhua, YAN Jun, LI Hong, et al. Measurement and model fitting for solubility of Disperse Red 11 in supercritical CO2[J]. Journal of Textile Research, 2019,40(8):80-84.
[27] ALWI R S, TAMURA K. Measurement and correlation of derivatized anthraquinone solubility in supercritical carbon dioxide[J]. Journal of Chemical and Engineering Data, 2015,60(10):3046-3052.
doi: 10.1021/acs.jced.5b00480
[28] SUNG H D, SHIM J J. Solubility of C.I. Disperse Red 60 and C.I. Disperse Blue 60 in supercritical carbon dioxide[J]. Journal of Chemical and Engineering Data, 1999,44(5):985-989.
doi: 10.1021/je990018t
[29] PATTERSON D, SHELDON R P. The solubilities and heats of solution of disperse dyes in water[J]. Journal of the Society of Dyers and Colourists, 1960,76(3):178-181.
[1] 张娟, 郑环达, 乔燕, 高世会, 郑来久. 亚麻粗纱的超临界CO2 煮漂工艺[J]. 纺织学报, 2020, 41(07): 93-100.
[2] 吴伟, 陈小文, 钟毅, 徐红, 毛志平. 硫酸钠在低带液轧-焙-蒸活性染料染色中的作用[J]. 纺织学报, 2020, 41(05): 85-93.
[3] 王小艳, 杜金梅, 彭铃淇, 荆丽丽, 许长海. 涤纶针织物碱减量和染色一浴一步法工艺 [J]. 纺织学报, 2020, 41(01): 80-87.
[4] 刘越, 莫林祥, 陈丰. 拼混型黑色分散染料的配伍性及其染色性能[J]. 纺织学报, 2019, 40(12): 63-67.
[5] 艾丽, 朱亚伟. 黏合剂的合成及其在分散蓝79微水印花中的应用[J]. 纺织学报, 2019, 40(06): 50-57.
[6] 钱璐敏, 张斌. 可溶性止血医用棉纱布的制备及其性能[J]. 纺织学报, 2019, 40(05): 102-106.
[7] 武奇奇, 李敏, 刘怡宁, 王乐军, 张丽平, 付少海. 聚乳酸织物载体染色性能[J]. 纺织学报, 2019, 40(01): 79-83.
[8] 艾丽 曹红梅 朱亚伟 丁志平. 基于液体分散染料的微量印花技术[J]. 纺织学报, 2018, 39(09): 77-83.
[9] 梁静 钟毅 毛志平 徐红 张琳萍 隋晓锋. 晶型对分散染料染色性能的影响[J]. 纺织学报, 2018, 39(07): 69-73.
[10] 叶思佳 杜奕铃 张永高 郑今欢. 涤纶起绒织物着色烂花印花中分散染料的耐碱性[J]. 纺织学报, 2018, 39(01): 98-103.
[11] 王晓春 闫金龙 张丽平 赵国樑 张健飞. 超高分子质量聚乙烯纤维分散染料染色性能[J]. 纺织学报, 2017, 38(11): 84-90.
[12] 朱维维 肖红 施楣梧. 超临界二氧化碳流体辅助下的纺织品整理技术研究进展[J]. 纺织学报, 2017, 38(11): 177-184.
[13] 郑环达 胥维昌 赵强 岳成君 单世宝 闫俊 郑来久. 涤纶筒纱超临界二氧化碳流体染色工程化装备与工艺[J]. 纺织学报, 2017, 38(08): 86-90.
[14] 傅伟松 周乃锋 陈华祥 唐智勇. 利用分散染料废水的硫酸铵自动连续化制备[J]. 纺织学报, 2017, 38(07): 107-111.
[15] 周乃锋 傅伟松 唐智勇 陈华祥 张玲玲 刘宏君. 基于粒径分析的分散染料黑浆聚集沉淀[J]. 纺织学报, 2016, 37(4): 80-85.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!