纺织学报 ›› 2023, Vol. 44 ›› Issue (01): 156-163.doi: 10.13475/j.fzxb.20210601908

• 染整与化学品 • 上一篇    下一篇

聚多巴胺修饰还原氧化石墨烯/聚吡咯导电织物的制备及其传感响应特性

万爱兰(), 沈新燕, 王晓晓, 赵树强   

  1. 江南大学 针织技术教育部工程研究中心, 江苏 无锡 214122
  • 收稿日期:2021-06-04 修回日期:2022-10-08 出版日期:2023-01-15 发布日期:2023-02-16
  • 作者简介:万爱兰(1976—),女,副教授,博士。主要研究方向为纺织材料与智能纺织品。E-mail:ailanwan@163.com
  • 基金资助:
    国家自然科学基金项目(61772238);中央高校基本科研业务费专项资金资助项目(JUSRP22026)

Preparation and sensing response characterization of polydopamine modified reduced graphene oxide/polypyrrole conductive fabrics

WAN Ailan(), SHEN Xinyan, WANG Xiaoxiao, ZHAO Shuqiang   

  1. Engineering Research Center for Knitting Technology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Received:2021-06-04 Revised:2022-10-08 Published:2023-01-15 Online:2023-02-16

摘要:

为改善导电织物导电层与织物间的界面黏附性,构建有效接触的导电网络,提升传感响应特性,采用聚多巴胺(PDA)对涤纶/氨纶针织物表面进行修饰,制备以还原氧化石墨烯(RGO)和聚吡咯(PPy)为导电层的柔性传感器。借助傅里叶红外光谱仪、扫描电子显微镜、自制KTC传感测试盒、四探针方阻测试仪、万能拉伸试验机等对导电织物进行表征与分析。结果表明:经PDA修饰后的织物与RGO/PPy间的界面黏附性有明显改善,所构建导电网络更为连续,相较于未修饰的导电织物具有更好的耐久性和耐磨性;该织物柔性传感器的拉伸范围在0%~130%之间时,灵敏度增加至39.1,响应时间为0.06 s,可准确识别人体关节运动。

关键词: 柔性传感器, 导电织物, 聚多巴胺, 还原氧化石墨烯, 聚吡咯, 传感响应特性

Abstract:

Objective Conductive fabric can be easily fabricated into smart clothes comfortable to wear. However, a common problem is that a large mismatch in mechanical properties between the conductive layer and the fabric substrate affects the performance of the flexible sensors. In order to improve the interfacial adhesion between the conductive layer and fabric, and construct an effective contact conductive network to obtain excellent sensing response characteristics, a reduced graphene oxide (RGO) and polypyrrole (PPy) flexible sensor was prepared by surface modification of polyester-spandex knitted fabric with polydopamine (PDA).
Method A knitted fabric substrate was modified by PDA, a PDA-RGO fabric was prepared by impregnation-drying and chemical reduction, and PPy was self-assembled on the PDA-RGO fabric via in-situ polymerization. The PDA modified RGO/PPy conductive fabric sensor was characterized and analyzed by Fourier infrared spectrometry (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), a self-made KTC sensor box, a four-probe square resistance tester, a Martindale abrasion and pilling tester and a universal tensile testing machine.
Results The PDA fabric, PDA-RGO fabric, PDA-RGO/PPy fabric and RGO/PPy fabric were prepared. A comparative study of the influence of PDA modification on the electrical conductivity and sensing properties of knitted fabrics was then carried out. The results indicated that the PDA filled the gaps among the yarns of the knitted fabric and improved the continuity of the conductive layer. The square resistance of the conductive fabrics showed that PDA enhanced the conductivity of the conductive fabric. The square resistance of the PDA-RGO/PPy fabric was about 0.08 kΩ/□. The PDA-modified knitted fabric had a strong adsorption to the conductive layer. RGO and PPy had a synergistic effect on the electrical properties, and the conductive fabrics containing RGO/PPY had better conductivity than fabrics with a single conductive component. The conductive layer of the PDA-modified RGO/PPY fabric had increased interfacial bonding by virtue of the bonding of the PDA. The change in resistance after rubbing was smaller for the PDA-RGO/PPy fabric than for the RGO/PPy fabric (Fig.5). The study of fabric sensing characteristics showed that PDA-RGO/PPy fabric had better sensing properties than RGO/PPy fabric. The stretching range of the PDA-RGO/PPy fabric flexible sensor was 0%~130%, the sensitivity was increased to 39.1, and the response time was 0.06 s. Moreover, the peak value of the relative change of resistance of PDA-RGO/PPy fabric was essentially the same for different stretching rate (Fig.6), proving the accuracy of this flexible sensor. This phenomenon can be explained by the fact that PDA deformed the conductive layer synchronously with the fabric substrate. The PDA-RGO/PPy fabric flexible sensor can be worn on joints such as fingers, wrists and knees to monitor motions. The fabric flexible sensor captures the motions steadily and outputs the relative change of resistance (Fig.11).
Conclusion The results of above characterizations indicate that the interfacial adhesion between the PDA-modified fabric and RGO/PPy is significantly improved, and the conductive network is constructed more continuous. Compared with unmodified fabrics, the modified fabrics has improved durability and rubbing resistance. The experimental results show that the sensing mechanism of the fabric sensor is mainly the disconnection mechanism and crack propagation. Monitoring of different joint motions can be achieved according to the resistance change curve and the data can be used for building human joint motion sensing systems. In the future, the conductive properties of the PDA-RGO/PPy fabric flexible sensor can be optimized by controlling the combination options and shape of the conductive materials for further adjusting the surface morphology of the conductive layer.

Key words: flexible sensor, conductive fabric, polydopamine, reduced graphene oxide, polypyrrole, sensing response characteristic

中图分类号: 

  • TS181.8

图1

织物的SEM照片(×5 000)"

图2

原织物、PDA织物、PDA-RGO织物、PDA-RGO/PPy织物的红外光谱"

图3

原织物、PDA织物、PDA-RGO织物、PDA-RGO/PPy织物的X射线衍射光谱"

图4

导电织物的表面方阻"

图5

PDA-RGO/PPy织物和RGO/PPy织物摩擦后的电阻变化"

图6

PDA-RGO/PPy织物和RGO/PPy织物在拉伸过程中的电阻响应及灵敏度变化"

图7

PDA-RGO/PPy织物和RGO/PPy织物在拉伸过程中的电阻响应及其拟合直线"

图8

PDA-RGO/PPy织物和RGO/PPy织物重复拉伸500次的电阻变化"

图9

PDA-RGO/PPy织物和RGO/PPy织物拉伸后的SEM照片"

图10

PDA-RGO/PPy织物的响应时间及其在不同拉伸速率下的电阻变化"

图11

人体关节运动监测"

[1] 郭茹月, 鲍艳. 二维导电材料/柔性聚合物复合材料基可穿戴压阻式应变传感器的研究进展[J]. 精细化工, 2021, 38(4):649-661.
GUO Ruyue, BAO Yan. Research progress on wearable piezoresistive strain sensors based on two-dimensional conductive materials/flexible polymer composites[J]. Fine Chemicals, 2021, 38 (4):649-661.
[2] LU Y, BISWAS M C, GUO Z, et al. Recent developments in bio-monitoring via advanced polymer nanocomposite-based wearable strain sensors[J]. Biosensors and Bioelectronics, 2019, 123: 167-177.
doi: S0956-5663(18)30636-5 pmid: 30174272
[3] LIU Q Q, ZHANG Y, LI A, et al. Reduced graphene oxide-coated carbonized cotton fabric wearable strain sensors with ultralow detection limit[J]. Journal of Materials Science: Materials in Electronics, 2020, 31(20): 17233-17248.
doi: 10.1007/s10854-020-04278-7
[4] WANG S, NING H, HU N, et al. Environmentally-friendly and multifunctional graphene-silk fabric strain sensor for human-motion detection[J]. Advanced Materials Interfaces, 2020. DOI:10.1002/admi.201901507.
doi: 10.1002/admi.201901507
[5] 白玉峰, 何小芳, 康冬冬, 等. 石墨烯/聚吡咯复合材料制备及应用研究进展[J]. 化工新型材料, 2019, 47(5):5-9.
BAI Yufeng, HE Xiaofang, KANG Dongdong, et al. Research progress in preparation and application of graphene/PPy composite[J]. New Chemical Materials, 2019, 47(5):5-9.
[6] BERENDJCHI A, KHAJAVI R, YOUSEFI A A, et al. Improved continuity of reduced graphene oxide on polyester fabric by use of polypyrrole to achieve a highly electro-conductive and flexible substrate[J]. Applied Surface Science, 2016, 363: 264-272.
doi: 10.1016/j.apsusc.2015.12.030
[7] CUI W, LI M, LIU J, et al. A strong integrated strength and toughness artificial nacre based on dopamine cross-linked graphene oxide[J]. ACS Nano, 2014, 8(9): 9511-9517.
doi: 10.1021/nn503755c pmid: 25106494
[8] NIU B, HUA T, HU H, et al. A highly durable textile-based sensor as a human-worn material interface for long-term multiple mechanical deformation sensing[J]. Journal of Materials Chemistry C, 2019, 7(46): 14651-14663.
doi: 10.1039/C9TC04006D
[9] ZHAI J, CUI C, REN E, et al. Facile synthesis of nickel/reduced graphene oxide-coated glass fabric for highly efficient electromagnetic interference shielding[J]. Journal of Materials Science: Materials in Electronics, 2020, 31(11): 8910-8922.
doi: 10.1007/s10854-020-03426-3
[10] HU S, LEI Z, TU L, et al. Elastomeric conductive hybrid hydrogels with continuous conductive networks[J]. Journal of Materials Chemistry B, 2019, 7(15): 2389-2397.
doi: 10.1039/c9tb00173e pmid: 32255117
[11] PAN J, YANG M, LUO L, et al. Stretchable and highly sensitive braided composite yarn@polydopamine@polypyrrole for wearable applications[J]. ACS Applied Materials & Interfaces, 2019, 11(7): 7338-7348.
[12] 常凤霞, 谭炯, 张熠佳. 聚多巴胺-还原氧化石墨烯修饰电极同时测定邻苯二酚和对苯二酚[J]. 分析科学学报, 2019, 35(6):841-846.
CHANG Fengxia, TAN Jiong, ZHANG Yijia. Simultaneous determination of catechol and hydroquinone on polydopamine-reduced graphene oxide modified electrode[J]. Journal of Analytical Science, 2019, 35(6):841-846.
[13] FLOUDA P, SHAH S A, LAGOUDAS D C, et al. Highly multifunctional dopamine-functionalized reduced graphene oxide supercapacitors[J]. Matter, 2019, 1(6): 1532-1546.
doi: 10.1016/j.matt.2019.09.017
[14] XU J, WANG D, YUAN Y, et al. Polypyrrole/reduced graphene oxide coated fabric electrodes for supercapacitor application[J]. Organic Electronics, 2015, 24: 153-159.
doi: 10.1016/j.orgel.2015.05.037
[15] 何青青, 徐红, 毛志平, 等. 高导电性聚吡咯涂层织物的制备[J]. 纺织学报, 2019, 40(10):113-119.
HE Qingqing, XU Hong, MAO Zhiping, et al. Preparation of high-electrical conductivity polypyrrole-coated fabrics[J]. Journal of Textile Research, 2019, 40(10):113-119.
[16] ZHAO Y, MA J, CHEN K, et al. One-pot preparation of graphene-based polyaniline conductive nanocomposites for anticorrosion coatings[J]. Nano, 2017. DOI:10.1142/S1793292017500564.
doi: 10.1142/S1793292017500564
[17] SUN J, SHU X, TIAN Y, et al. Facile preparation of polypyrrole-reduced graphene oxide hybrid for enhancing NH3 sensing at room temperature[J]. Sensors and Actuators B: Chemical, 2017, 241: 658-664.
doi: 10.1016/j.snb.2016.10.047
[1] 俞杨销, 李枫, 王煜煜, 王善龙, 王建南, 许建梅. 聚吡咯/丝素导电纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(10): 16-23.
[2] 杨宏林, 项伟, 董淑秀. 涤纶基纳米铜/还原氧化石墨烯复合材料的制备及其电磁屏蔽性能[J]. 纺织学报, 2022, 43(08): 107-112.
[3] 赵博宇, 李露红, 丛洪莲. 棉/Ti3C2导电纱制备及其电容式压力传感器的性能[J]. 纺织学报, 2022, 43(07): 47-54.
[4] 谢梦玉, 胡啸林, 李星, 瞿建刚. 还原氧化石墨烯/粘胶多层复合材料的制备及其界面蒸发性能[J]. 纺织学报, 2022, 43(04): 117-123.
[5] 陶旭晨, 李林, 徐珍珍. 杯芳烃/还原氧化石墨烯纤维的制备及其选择性吸附性能[J]. 纺织学报, 2022, 43(03): 64-70.
[6] 周筱雅, 马定海, 胡铖烨, 洪剑寒, 刘永坤, 韩潇, 闫涛. 涤纶/聚酰胺6纳米纤维包覆纱的连续制备及其应用[J]. 纺织学报, 2022, 43(02): 110-115.
[7] 邹梨花, 杨莉, 兰春桃, 阮芳涛, 徐珍珍. 层层组装氧化石墨烯/聚吡咯涂层棉织物的电磁屏蔽性能[J]. 纺织学报, 2021, 42(12): 111-118.
[8] 王曙东, 董青, 王可, 马倩. 还原氧化石墨烯增强聚乳酸纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(12): 28-33.
[9] 陈莹, 方浩霞. 疏水性导电聚吡咯整理棉织物的制备及其性能[J]. 纺织学报, 2021, 42(10): 115-119.
[10] 虞茹芳, 洪兴华, 祝成炎, 金子敏, 万军民. 还原氧化石墨烯涂层织物的电加热性能[J]. 纺织学报, 2021, 42(10): 126-131.
[11] 荣凯, 樊威, 王琪, 张聪, 于洋. 二维过渡金属碳/氮化合物复合纤维在智能可穿戴领域的应用进展[J]. 纺织学报, 2021, 42(09): 10-16.
[12] 朱小威, 韦天琛, 邢铁玲, 陈国强. 非晶光子晶体结构色织物的制备及其数值模拟[J]. 纺织学报, 2021, 42(09): 90-96.
[13] 王晓菲, 万爱兰, 沈新燕. 基于聚多巴胺修饰的聚吡咯导电织物制备与应变传感性能[J]. 纺织学报, 2021, 42(06): 114-119.
[14] 李一飞, 郑敏, 常朱宁子, 李丽艳, 曹元鸣, 翟旺宜. 二维过渡金属碳化物(Ti3C2Tx)对棉针织物的功能整理及其性能分析[J]. 纺织学报, 2021, 42(06): 120-127.
[15] 刘晓倩, 陈玉, 周惠敏, 闫源, 夏鑫. 等离子体接枝丙烯酸改性聚丙烯腈导电纳米纤维纱线的制备[J]. 纺织学报, 2021, 42(05): 109-114.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 【分类号】:Z【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  一;纺 纱模糊控制纺纱张力的研究周光茜等 ( - )………………原棉含杂与除杂效果评价方法的研究于永玲 ( - )……网络长丝纱免浆免捻功能的结构表征方法李栋高等 ( - )……………. 2003年纺织学报第二十四卷总目次[J]. 纺织学报, 2003, 24(06): 109 -620 .
[2] 张金秋;张华;郝新敏;姜凤琴. 大麻纤维高温煮练时间与脱胶质量的关系[J]. 纺织学报, 2006, 27(2): 81 -83 .
[3] 吕荣文;高崑玉. 超细纤维用分散染料染色性能研究[J]. 纺织学报, 2004, 25(04): 60 -61 .
[4] 陈维国;戴瑾瑾;王俊苏;贾成通;汪智勇;孟照成. 高耐光色牢度还原染料对涤纶织物的热熔法染色[J]. 纺织学报, 2008, 29(9): 82 -86 .
[5] 李重;. 双圆弧在服装纸样设计中的应用[J]. 纺织学报, 2005, 26(5): 101 -102 .
[6] 崔毅华. 玄武岩连续纤维的基本特性[J]. 纺织学报, 2005, 26(5): 120 -121 .
[7] 李发学;张广平;吴丽莉;俞建勇. 三羟甲基乙烷/新戊二醇二元体系的DSC研究[J]. 纺织学报, 2004, 25(05): 59 -60 .
[8] 周赳;吴文正. 有彩数码提花织物的创新设计原理和方法[J]. 纺织学报, 2006, 27(5): 6 -9 .
[9] 李利君;蒲宗耀;李风;王桦;兰彬. 聚苯硫醚纤维的热降解动力学[J]. 纺织学报, 2010, 31(12): 4 -8 .
[10] 闻荻江;王辉;朱新生;孙建平. 丝素蛋白的构象与结晶性[J]. 纺织学报, 2005, 26(1): 110 -112 .