纺织学报 ›› 2023, Vol. 44 ›› Issue (04): 46-54.doi: 10.13475/j.fzxb.20220606009

• 纺织工程 • 上一篇    下一篇

新型缫丝成筒技术的工艺优化

罗海林1, 苏健2, 金万慧3, 傅雅琴1()   

  1. 1.浙江理工大学 材料科学与工程学院, 浙江 杭州 310018
    2.通标标准技术服务有限公司杭州分公司,浙江 杭州 310052
    3.湖北省纤维检验局, 湖北 武汉 430000
  • 收稿日期:2022-06-27 修回日期:2022-11-03 出版日期:2023-04-15 发布日期:2023-05-12
  • 通讯作者: 傅雅琴(1965—),女,教授,博士。主要研究方向为蚕丝加工设备和工艺。E-mail:fyq01@zstu.edu.cn
  • 作者简介:罗海林(1977—),男,实验师,博士。主要研究方向为蚕丝加工设备和工艺。
  • 基金资助:
    中央外贸发展专项(浙财企[2016]109号);浙江省教育厅科研项目(Y202147967)

Process optimization of novel silk reeling technique

LUO Hailin1, SU Jian2, JIN Wanhui3, FU Yaqin1()   

  1. 1. College of Material Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Hangzhou Branch, Sgs-Cstc Standards Technical Service Co., Ltd., Hangzhou, Zhejiang 310052, China
    3. Hubei Province Fiber Inspection Bureau, Wuhan, Hubei 430000, China
  • Received:2022-06-27 Revised:2022-11-03 Published:2023-04-15 Online:2023-05-12

摘要:

为缩短生丝加工流程并改进现有的缫丝成筒技术,在自动缫丝机基础上,借鉴络筒机的络交卷绕和张力控制等方法,开发出了一种新型的缫丝成筒设备及技术。通过正交分析法优化了缫丝成筒技术的工艺参数,并考察该缫丝成筒技术制备的缫丝成筒生丝与自动缫丝机制备的小䈅生丝和小䈅生丝经复摇、整理、泡丝、络筒等传统工序制备的传统筒装生丝在结构和性能上的差异。结果表明:对于选用的原料茧,当选择卷绕速度130 m/min、超喂比1.15、干燥温度90 ℃、油剂体积分数5%作为工艺参数时,该技术制备的缫丝成筒生丝同时具有相对较好的断裂强度、断裂伸长和抱合性能。缫丝成筒生丝的分子基团和结晶结构等微观结构、断裂伸长率、柔软性等力学性能与传统筒装生丝相近,而断裂强度、抱合指标要明显优于传统筒装生丝。新型缫丝成筒技术制备的筒装生丝优异的性能表明该技术具有良好的应用前景。

关键词: 缫丝成筒, 缫丝设备, 生丝, 短流程, 工艺优化, 力学性能

Abstract:

Objective To shorten the raw silk process and improve the existing silk reeling techniques onto bobbins, a novel type of silk reeling machine was developed based on the automatic silk reeling machine. The new type of silk reeling machine was equipped with a single thread-controlled winding device and an active overfeeding device with an electromechanical integrated and compact structure. This research was set to investigate the optimization of the process parameters of the novel silk reeling machine and the properties of the raw silk.
Method The process parameters were optimized using the orthogonal analysis method. We selected the winding speed, overfeeding ratio, drying temperature, and oil concentration as test factors, and the breaking strength, breaking elongation rate, and cohesion property of the raw silk prepared by the new silk reeling machine as test indexes. After the optimization, the differences between the raw silk on bobbins prepared by the new silk reeling technique onto bobbins, the raw silk on small reels prepared by the automatic silk reeling machine, and the traditional raw silk on bobbins prepared by processes such as re-reeling, finishing, foaming, winding were investigated.
Results In the optimization experiment of parameters, the winding speed showed a very significant effect on the breaking strength and breaking elongation rate of the raw silk. The overfeeding ratio and drying temperature have a significant or very significant effect on the breaking strength, breaking elongation rate, and cohesion property of the reeled raw silk. However, the oil concentration has no significant effect on the breaking strength and breaking elongation rate of the raw silk. It only has a very significant effect on the cohesion property of the raw silk. For the selected raw material cocoons, when the winding speed is 130 m/min, the overfeed ratio is 1.15, the drying temperature is 90 ℃, and the oiling concentration is 5%, that is, when they are used as the optimal process parameters, the raw silk on bobbins prepared by the new type of silk reeling machine has relatively good breaking strength, breaking elongation rate and cohesion property at the same time. In the comparative experiment of the three kinds of raw silk, the surface morphology of the raw silk on bobbins prepared by the new silk reeling technique onto bobbins is similar to that of the traditional raw silk on bobbins, better than that of the raw silk on small reels. The molecular composition, crystallinity, and other microstructures of the three kinds of raw silk are similar(Fig. 4, Fig. 5). The breaking elongation rate, softness, and other properties of the raw silk on bobbins prepared by the new silk reeling technique onto bobbins are similar to those of the traditional raw silk on bobbins, while the breaking strength and cohesion property of the raw silk on bobbins prepared by the new silk reeling technique onto bobbins are significantly better than those of the traditional raw silk on bobbins.
Conclusion The research provides a practical basis for the development of silk reeling techniques onto bobbins. The raw silk on bobbins prepared by the new silk reeling technology onto bobbins has similar properties to the traditional raw silk on bobbins, which can meet the subsequent weaving needs of raw silk. Moreover, the new silk reeling technique onto bobbins can reduce the raw silk processing process, such as rewinding, finishing, soaking, and other steps, improving production efficiency, reducing production costs, reducing energy consumption, and protecting the environment. Therefore, the new silk reeling technique onto bobbins has a good application prospect.

Key words: silk reeling technique onto bobbin, silk reeling equipment, raw silk, short process, process optimization, mechanical property

中图分类号: 

  • TS142.2

图1

设计改造的缫丝成筒设备结构和实物图"

表1

因素水平设计表"

水平 A
卷绕速度/
(m·min-1)
B
超喂比
C
干燥温
度/℃
D
油剂体积
分数/%
1 100 1.10 70 0
2 130 1.15 80 5
3 160 1.20 90 10

表2

缫丝成筒生丝性能的方差分析"

断裂强度 断裂伸长率 抱合性能
平方和 自由度 均方 F Sig. 平方和 自由度 均方 F Sig. 平方和 自由度 均方 F Sig.
A 0.081 2 0.040 8.385 0.004 2.454 2 1.227 7.229 0.007 39.407 2 19.704 0.758 0.487
B 0.234 2 0.117 24.308 0.000 8.339 2 4.169 24.563 0.000 205.852 2 102.926 3.958 0.043
A×B 0.010 4 0.003 0.538 0.710 0.570 4 0.143 0.840 0.522 5.704 4 1.426 0.055 0.994
C 0.067 2 0.034 7.000 0.008 2.883 2 1.441 8.493 0.004 289.852 2 144.926 5.573 0.017
D 0.005 2 0.003 0.538 0.595 0.347 2 0.174 1.023 0.385 608.074 2 304.037 11.691 0.001
误差 0.067 14 0.005 2.376 14 0.170 364.074 14 26.005

表3

不同试验因素和水平对应的缫丝成筒生丝性能指标"

水平 断裂强度/(cN·dtex-1) 断裂伸长率/% 抱合性能/次
A B C D A B C D A B C D
1 3.489* 3.656 3.500 3.544 21.833 20.822* 22.011* 21.444 102.222 103.444 97.444 97.889
2 3.567 3.589 3.556 3.578 21.800 21.922 21.589 21.667 101.333 102.333 100.111 107.667*
3 3.622 3.433* 3.622 3.556 21.178* 22.067 21.211 21.700 99.333 97.111* 105.333* 97.333

图2

3种生丝的SEM照片(×1 000)"

图3

3种生丝的FT-IR光谱图"

图4

3种生丝的XRD谱图"

表4

3种生丝样品的性能"

生丝样品 断裂强度 断裂伸长率 初始模量 抱合性能
平均值/(cN·dtex-1) CV值/% 平均值/% CV值/% 平均值/( cN·dtex-1) CV值/% 平均值/次 CV值/%
缫丝成筒生丝 3.78 4.5 22.4 8.6 88.4 6.1 110 10.1
小?生丝 3.83 5.1 20.9 7.5 95.3 6.9 117 7.7
传统筒装生丝 3.54 5.3 23.8 8.3 85.6 7.4 85 12.9
[1] 邵正中. 蚕丝、蜘蛛丝及其丝蛋白[M]. 北京: 化学工业出版社, 2015: 35.
SHAO Zhengzhong. Silk, spider silk and silk pro-teins[M]. Beijing: Chemical Industry Press, 2015: 35.
[2] SONG Ruoyuan, KIMURA Teruo, INO Haruhiro. Papermaking from waste silk and its application as reinforcement of green composite[J]. Journal of Textile Engineering, 2010, 56(3): 71-76.
doi: 10.4188/jte.56.71
[3] ZHENG Haiyan, ZUO Baoqi. Functional silk fibroin hydrogels: preparation, properties and applications[J]. Journal of Materials Chemistry B, 2021, 9(5): 1238-1258.
doi: 10.1039/d0tb02099k pmid: 33406183
[4] GORE Prakash, NAEBE Minoo, WANG Xungai, et al. Nano-fluoro dispersion functionalized superhydrophobic degummed & waste silk fabric for sustained recovery of petroleum oils & organic solvents from wastewate[J]. Journal of Hazardous Materials, 2022, 426: 1-18.
[5] KUNTAMALLA Sujatha, JANGA Sathish. A study on health problems faced by workers in silk industry[J]. International Journal of Entomology Research, 2017, 2(1): 76-78.
[6] 谭之虎. “直接缫丝”的关键技术丝条烘干装置的探索与研究:缫丝工艺及设备创新之二[J]. 四川丝绸, 2007(1): 12-16.
TAN Zhihu. The key technology of "direct silk reeling": exploration and research of silk strip drying device-the second innovation of silk reeling technology and equipment[J]. Sichuan Silk, 2007(1): 12-16.
[7] 戴冬冬. 短流程缫丝红外干燥技术的研究[D]. 杭州: 浙江理工大学, 2015: 1-59.
DAI Dongdong. Research on the infrared drying technology of short process silk reeling[D]. Hangzhou: Zhejiang Sci-Tech University, 2015: 1-59.
[8] 黄思思. 短流程小䈅生丝成筒工艺研究[D]. 杭州: 浙江理工大学, 2021: 1-27.
HUANG Sisi. Research on the short process of raw silk on bobbins from small reels[D]. Hangzhou: Zhejiang Sci-Tech University, 2021: 1-27.
[9] 徐广良. 筒子缫丝机结构性能的研究[J]. 辽宁丝绸, 1996(4): 9-11.
XU Guangliang. Research on the structure and performance of the bobbin reeling machine[J]. Liaoning Silk, 1996(4): 9-11.
[10] 张在钜. 关于生丝平行筒子卷绕的研究[J]. 丝绸, 1979, 16(10): 38-43.
ZHANG Zaiju. Research on the parallel bobbin winding of raw silk[J]. Journal of Silk, 1979, 16(10): 38-43.
[11] 储有弘. 500克卷装容量繅丝成筒一步工艺[J]. 丝绸, 1985, 22(5): 4-5.
CHU Youhong. One-step process of the silk reeling onto a bobbin with a capacity of 500 grams[J]. Journal of Silk, 1985(5): 4-5.
[12] 张善能. 气流式无张力自动缫丝机[J]. 丝绸, 1977, 14(8): 43-45.
ZHANG Shanneng. Airflow tensionless automatic silk reeling machine[J]. Journal of Silk, 1977(8): 43-45.
[13] 周海观, 孙秉熔. 减小自动缫丝张力的方法和装置[J]. 丝绸, 2000, 37(5): 26-27.
ZHOU Haiguan, SUN Bingrong. Method and device for reducing tension in automatic silk reeling[J]. Journal of Silk, 2000(5): 26-27.
[14] 罗海林, 傅雅琴, 刘柯. 直接成筒缫丝的自动缫丝机结构设计[J]. 纺织学报, 2020, 41(8): 115-120.
LUO Hailin, FU Yaqin, LIU Ke. Structural design of automatic silk reeling machine for silk winded onto bobbin directly[J]. Journal of Textile Research, 2020, 41(8): 115-120.
[15] OKAJIMA Masaaki, SHIGETO Shigeto, KINOSHITA Haruo, et al. Influence of reeling conditions on reeling tension by multipurpose reeling machine[J]. The Journal of Silk Science and Technology of Japan, 2016, 24: 25-32.
[16] REDDY Aswatha, MAHESH Kulkarnineema. Distribution of reeling process parameters and performance in different silk reeling systems[J]. Man-Made Textiles in India, 2009, 52(6): 203-206.
[17] LEE Yongwoo. Silk reeling and testing manual[M]. Rome: Food and Agriculture Organization of the United Nations, 1999: 5-80.
[18] 单小红, 徐红. 真丝针织浸渍工艺的研究[J]. 新疆大学学报, 2002, 19(1): 123-127.
SHAN Xiaohong, XU hong. Research on impregnation technology of silk knitting[J]. Journal of Xinjiang University, 2002, 19(1): 123-127.
[19] LI Lina, BAI Shiqi, FU Yaqin. Effect of silk reeling velocity on the aggregation structure of raw silk[C]// Advanced Materials Research. Switzerland: Trans Tech Publications, 2011: 496-499.
[20] LIU Chen, SUN Jiaqi, SHAO Min, et al. A comparison of centrifugally-spun and electrospun regenerated silk fibroin nanofiber structures and properties[J]. The Royal Society of Chemistry, 2015, 5(119): 98553-99855.
[21] WANG Rui, ZHU Yaofeng, SHI Zhuo, et al. Degumming of raw silk via steam treatment[J]. Journal of Cleaner Production, 2018(203): 492-497.
[22] TSUKADA Masuhiro, OBO Masahiro, KATO Hiroshi, et al. Structure and dyeability of bombyx mori silk fibers with different filament sizes[J]. Journal of Applied Polymer Science, 1996, 60(10): 1162-1619.
[23] LU Qiang, HU Xiao, WANG Xiaoqin, et al. Water-insoluble silk films with silk I structure[J]. Acta Biomaterialia, 2010, 6(4): 1380-1387.
doi: 10.1016/j.actbio.2009.10.041 pmid: 19874919
[24] SHAO Jianzhong, ZHENG Jinhuan, LIU Jinqiang, et al. Fourier transform raman and fourier transform infrared spectroscopy studies of silk fibroin[J]. Journal of Applied Polymer Science, 2005, 96(6): 1999-2004.
doi: 10.1002/(ISSN)1097-4628
[25] IRIDAG Yesim, KAZANCI Murat. Preparation and characterization of bombyx mori silk fibroin and wool keratin[J]. Journal of Applied Polymer Science, 2006, 100(5): 4260-4264.
doi: 10.1002/(ISSN)1097-4628
[26] KHAN Majiburrahman, TSUKADA Masuhiro, GOTOH Yasuo, et al. Physical properties and dyeability of silk fibers degummed with citric acid[J]. Bioresource Technology 2010, 101(21): 8439 -8844.
doi: 10.1016/j.biortech.2010.05.100 pmid: 20598526
[27] 吕超目. 浸泡工艺对鲜茧丝品质的影响[D]. 杭州: 浙江理工大学, 2017: 9-49.
LÜ Chaomu. Effects of soaking process on the quality of the fresh cocoon silk[D]. Hangzhou: Zhejiang Sci-Tech University, 2017: 9-49.
[28] 许凤麟. 提高生丝柔软性的途径及影响因素的研究[D]. 杭州: 浙江理工大学, 2015: 10-49.
XU Fenglin. Research on the ways and influencing factors of improving the softness of raw silk[D]. Hangzhou: Zhejiang Sci-Tech University, 2015:10-49.
[1] 许建梅, 潘璐璐, 伍冬平, 卞幸儿, 胡亿丰, 戴佳洋, 王雨静. 生丝传统检验与电子检测的碳足迹核算与评价[J]. 纺织学报, 2023, 44(04): 38-45.
[2] 黄伟, 张嘉煜, 张东, 程春祖, 李婷, 吴伟. Lyocell纤维性能表征及其对比分析[J]. 纺织学报, 2023, 44(03): 42-48.
[3] 姜博宸, 王玥, 王富军, 林婧, 郭爱军, 王璐, 关国平. 一体化机械编织食管覆膜支架的力学性能与编织参数关系[J]. 纺织学报, 2023, 44(03): 88-95.
[4] 陈欢欢, 陈凯凯, 杨慕容, 薛昊龙, 高伟洪, 肖长发. 聚乳酸/百里酚抗菌纤维的制备与性能[J]. 纺织学报, 2023, 44(02): 34-43.
[5] 万颖萍, 王宗乾, 王英沣, 杨海伟, 吴开明, 谢伟. 抗菌羽绒的短流程制备及其性能[J]. 纺织学报, 2023, 44(01): 149-155.
[6] 王曙东. 三维多孔生物可降解聚合物人工食管支架的结构与力学性能[J]. 纺织学报, 2022, 43(12): 16-21.
[7] 张书诚, 邢剑, 徐珍珍. 基于废弃聚苯硫醚滤料的多层吸声材料制备及其性能[J]. 纺织学报, 2022, 43(12): 35-41.
[8] 张志颖, 王亦秋, 眭建华. 超高分子量聚乙烯纤维增强中空蜂窝模压复合材料性能研究[J]. 纺织学报, 2022, 43(11): 81-87.
[9] 陈康, 陈高峰, 王群, 王刚, 张玉梅, 王华平. 后加工中热处理张力变化对高模低收缩涤纶工业丝结构与性能影响[J]. 纺织学报, 2022, 43(10): 10-15.
[10] 高峰, 孙燕琳, 肖顺立, 陈文兴, 吕汪洋. 不同牵伸倍率下聚酯复合纤维的微观结构与性能[J]. 纺织学报, 2022, 43(08): 34-39.
[11] 孙颖, 李端鑫, 于洋, 陈嘉琳, 范皖月. 大麻纤维的芬顿法脱胶及其性能[J]. 纺织学报, 2022, 43(08): 95-100.
[12] 黄耀丽, 陆诚, 蒋金华, 陈南梁, 邵慧奇. 聚酰亚胺纤维增强聚二甲基硅氧烷柔性复合膜的热力学性能[J]. 纺织学报, 2022, 43(06): 22-28.
[13] 渠赟, 马维, 刘颖, 任学宏. 可光降解聚羟基丁酸酯/聚己内酯基抗菌纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(06): 29-36.
[14] 孙焕惟, 张恒, 崔景强, 朱斐超, 王国锋, 苏天阳, 甄琪. 聚乳酸非织造材料的后牵伸辅助熔喷成形工艺及其力学性能[J]. 纺织学报, 2022, 43(06): 86-93.
[15] 赵波波, 王亮, 李敬毓, 万刚, 夏兆鹏, 刘雍. 六次甲基四胺交联酚醛纤维的制备及其性能[J]. 纺织学报, 2022, 43(05): 57-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!