纺织学报 ›› 2025, Vol. 46 ›› Issue (09): 27-35.doi: 10.13475/j.fzxb.20250206201
• 纺织科技新见解学术沙龙专栏:伪装与电磁屏蔽技术及应用 • 上一篇 下一篇
LIANG Rui1,2, LI Zhong3, TONG Weihong3, YE Changhuai1,2(
)
摘要: 为解决纺织品废弃物造成的资源浪费与环境污染问题,提出了一种聚乙烯织物升值再利用方法。采用简便的浓硫酸磺化交联结合高温炭化工艺,将聚乙烯织物转化为高电导率碳纤维织物,并探索了其电磁屏蔽性能。结果表明:磺化时间对聚乙烯纤维形貌有重要影响,最佳磺化时间为6 h;而炭化温度与导电性能呈正相关,拉曼光谱表明随着温度提高,碳纤维石墨化程度显著提升;1 000 ℃炭化的织物(厚度约1 mm)具有321.8 S/m的高电导率,并在X波段实现34 dB的电磁屏蔽效能,其屏蔽机制以反射为主。此外,碳纤维织物的屏蔽效能可根据厚度进行调节,随着厚度增大到3 mm,织物的电磁屏蔽效能显著提高到87 dB。所制备的碳纤维织物展现出高导电性和优异电磁屏蔽效能,为废弃纺织品资源化再利用提供了新思路。
中图分类号:
| [1] |
ZERAATI A S, MIRKHANI S A, SHARIF F, et al. Electrochemically exfoliated graphite nanosheet films for electromagnetic interference shields[J]. ACS Applied Nano Materials, 2021, 4(7): 7221-7233.
doi: 10.1021/acsanm.1c01172 |
| [2] | 刘顺华, 刘军民, 董星龙, 等. 电磁波屏蔽与吸波材料[M]. 2版. 北京: 化学工业出版社, 2013: 49-182. |
| LIU Shunhua, LIU Junmin, DONG Xinglong, et al. Electromagnetic wave shielding and absorbing materials[M]. 2nd ed. Beijing: Chemical Industry Press, 2013: 49-182. | |
| [3] | 余子锐, 周丹锋, 袁欢, 等. 聚合物基电磁屏蔽复合材料的异质结构构建策略研究进展[J]. 复合材料学报, 2024, 10(31): 1-14. |
| YU Zirui, ZHOU Danfeng, YUAN Huan, et al. Research progress on heterogeneous structure construction strategies of polymer-based electromagnetic shielding composites[J]. Acta Materiae Compositae Sinica, 2024, 10(31): 1-14. | |
| [4] |
ZHENG Shufang, WANG Yuyin, WANG Xuesheng, et al. Research progress on high-performance electromagnetic interference shielding materials with well-organized multilayered structures[J]. Materials Today Physics, 2024, 40: 101330.
doi: 10.1016/j.mtphys.2024.101330 |
| [5] |
SONG Qiang, YE Fang, YIN Xiaowei, et al. Carbon nanotube-multilayered graphene edge plane core-shell hybrid foams for ultrahigh-performance electro-magnetic-interference shielding[J]. Advanced Materials, 2017, 29(31): 1701583.
doi: 10.1002/adma.v29.31 |
| [6] |
FU Huili, YANG Zhengpeng, ZHANG Yongyi, et al. SWCNT-modulated folding-resistant sandwich-structured graphene film for high-performance electromagnetic interference shielding[J]. Carbon, 2020, 162: 490-496.
doi: 10.1016/j.carbon.2020.02.081 |
| [7] |
王喜花, 黄丽, 张彦超, 等. 轻质碳基电磁屏蔽与吸波材料研究进展[J]. 化工新型材料, 2023, 51(11): 251-256, 262.
doi: 10.19817/j.cnki.issn1006-3536.2023.11.008 |
|
WANG Xihua, HUANG Li, ZHANG Yanchao, et al. Research progress on lightweight carbon-based electromagnetic shielding and absorbing materials[J]. New Chemical Materials, 2023, 51(11): 251-256, 262.
doi: 10.19817/j.cnki.issn1006-3536.2023.11.008 |
|
| [8] |
NAEEM S, BSHETI V, TUNAKOVA V, et al. Development of porous and electrically conductive activated carbon web for effective EMI shielding applications[J]. Carbon, 2017, 111: 439-447.
doi: 10.1016/j.carbon.2016.10.026 |
| [9] | LI Songtao, LIU Dongyan, LI Wangchong, et al. Strong and heat-resistant SiC-coated carbonized natural loofah sponge for electromagnetic interference shielding[J]. ACS Sustainable Chemistry & Engineering, 2019, 8(1): 435-444. |
| [10] | RAGOSNIG A M, AGAMUTHU P. Plastic waste: challenges and opportunities[J]. Waste Management & Research, 2021, 39(5): 629-630. |
| [11] |
SHAPIRO A J, BRIGANDI P J, MOUBARAK M, et al. Cross-linked polyolefins: opportunities for fostering circularity throughout the materials lifecycle[J]. ACS Applied Polymer Materials, 2024, 6(19): 11859-11876.
doi: 10.1021/acsapm.4c01959 pmid: 39416717 |
| [12] | 黄芸珂, 汪艳. 形状记忆交联聚乙烯的制备及其光热、磁响应性能[J]. 高分子通报, 2024, 37(12): 1814-1820. |
| HUANG Yunke, WANG Yan. Preparation of shape memory cross-linked polyethylene and its photothermal and magnetic response properties[J]. Polymer Bulletin, 2024, 37(12): 1814-1820. | |
| [13] |
RAFIEI-SARMAZDEH Z, TORAB-MOSTAEDI M, ASDOLLAHZADEH M, et al. Foaming behavior of radiation-crosslinked virgin and recycled low-density polyethylene[J]. Journal of Polymers and the Environment, 2025, 33: 2149-2160.
doi: 10.1007/s10924-025-03509-4 |
| [14] |
KHERADMANDKEYSOMI M, SALEHI A, JALALI A, et al. Achieving super-tough high-density polyethylene with promising foamability using silane crosslinked polyolefin elastomer nanofibrils network[J]. Composites Science and Technology, 2024, 251: 110576.
doi: 10.1016/j.compscitech.2024.110576 |
| [15] | LI Chengpeng, ZHU Haijin, SALIM N V, et al. Preparation of microporous carbon materials via in-depth sulfonation and stabilization of polyethylene[J]. Carbon, 2016, 134: 272-283. |
| [16] |
ROBERTSON M, OBANDO A G, EMERY J, et al. Multifunctional carbon fibers from chemical upcycling of mask waste[J]. ACS Omega, 2022, 7(14): 12278-12287.
doi: 10.1021/acsomega.2c00711 pmid: 35449951 |
| [17] |
SMITH P, BOUNDS E, JONES K, et al. Enabling 3D printing of carbons by polyethylene precursors[J]. MRS Communications, 2024, 14: 717-724.
doi: 10.1557/s43579-024-00619-3 |
| [18] |
LIM H, SHIN M, KWON Y. Vanadium redox flow batteries including carbon catalysts derived from low-density polyethylene and polyurethane[J]. Korean Journal of Chemical Engineering, 2023, 40: 3087-3095.
doi: 10.1007/s11814-023-1576-y |
| [19] |
GRIFFIN A, WU Jiachun, SMERIGAN A, et al. Upcycling of mixed polyolefin wastes to 3D structured carbon Joule heaters for decarbonized hydrogen production[J]. Materials Horizons, 2025, 12: 3827-3840.
doi: 10.1039/D4MH01755B |
| [20] |
JIANG Dawei, MURUGADOSS V, WANG Ying, et al. Electromagnetic interference shielding polymers and nanocomposites: a review[J]. Polymer Reviews, 2019, 59(2): 280-337.
doi: 10.1080/15583724.2018.1546737 |
| [21] | PALMENAER A D, WORTBERG G, DRISSEN F, et al. Production of polyethylene based carbon fibers[J]. Chemical Engineering Transactions, 2015, 43: 1699-1704. |
| [22] |
BARTON B, PATTON J, HUKKANEN E, et al. The chemical transformation of hydrocarbons to carbon using SO3 sources[J]. Carbon, 2015, 94: 465-471.
doi: 10.1016/j.carbon.2015.07.029 |
| [23] |
YOUNKER J M, SAITO T, HUNT M A, et al. Pyrolysis pathways of sulfonated polyethylene, an alternative carbon fiber precursor[J]. Journal of the American Chemical Society, 2013, 135(16): 6130-6141.
doi: 10.1021/ja3121845 pmid: 23560686 |
| [24] |
SMITH P, GUILLEN O A, GRFFIN A, et al. Sulfonation-induced structural evolution of polyethylene fibers for enhanced carbonization performance[J]. Advanced Materials, 2023, 35(31): 2208029.
doi: 10.1002/adma.v35.17 |
| [25] | 石彦平. 拉曼光谱研究碳纤维的微观结构和性能[D]. 上海: 东华大学, 2011: 21-24. |
| SHI Yanping. Studies on the microstructure and properties of carbon fibers by Raman spectroscopy[D]. Shanghai: Donghua University, 2011: 21-24. | |
| [26] | 贺福. 碳纤维及石墨纤维[M]. 北京: 化学工业出版社, 2010: 376-380. |
| HE Fu. Carbon fibers and graphite fibers[M]. Beijing: Chemical Industry Press, 2010: 376-380. | |
| [27] |
OKUDA H, YOUNG R J, WOLVERSON D, et al. Investigating nanostructures in carbon fibres using Raman spectroscopy[J]. Carbon, 2018, 130: 178-184.
doi: 10.1016/j.carbon.2017.12.108 |
| [28] | GONG Yutong, WANG Haiyan, WEI Zhongzhe, et al. An efficient way to introduce hierarchical structure into biomass-based hydrothermal carbonaceous materials[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(10): 2435-2441. |
| [29] |
YANG Pingjun, LI Tiehu, LI Hao, et al. Microstructure, electrical conductivity and mechanical properties of graphitization carbon foam derived from epoxy resin modified with coal tar pitch[J]. Carbon Letters, 2024, 34: 1065-1073.
doi: 10.1007/s42823-023-00642-9 |
| [30] |
TAO Yubo, LI Peng, SHI Qiang. Effects of carbonization temperature and component ratio on electromagnetic interference shielding effectiveness of wood ceramics[J]. Materials, 2016, 9(7): 540.
doi: 10.3390/ma9070540 |
| [31] | WANG Yue, PENG Suping, ZHU Shu, et al. Biomass-derived, highly conductive aqueous inks for superior electromagnetic interference shielding, joule heating, and strain sensing[J]. ACS Applied Materials & Interfaces, 2021, 13(48): 57930-57942. |
| [32] |
HAN Meikang, YIN Xiaowei, HANTANASIRISAKUL K, et al. Anisotropic MXene aerogels with a mechanically tunable ratio of electromagnetic wave reflection to absorption[J]. Advanced Optical Materials, 2019, 7(10): 1900267.
doi: 10.1002/adom.v7.10 |
| [33] |
HU Qingmei, YANG Rongliang, MO Zichao, et al. Nitrogen-doped and Fe-filled CNTs/NiCo2O4 porous sponge with tunable microwave absorption perform-ance[J]. Carbon, 2019, 153: 737-744.
doi: 10.1016/j.carbon.2019.07.077 |
| [34] | 贺鑫惠, 毕思伊, 李宏杰, 等. 梯度结构碳纤维毡复合材料的制备及电磁屏蔽性能[J/OL]. 复合材料学报, 2024,43: 1-9. |
| HE Xinhui, BI Siyi, LI Hongjie, et al. Preparation and electromagnetic shielding performance of multi-layer carbon fiber mat composites[J/OL]. Acta Materiae Compositae Sinica, 2024,43: 1-9. |
| [1] | 唐春霞, 王一帆, 毛云山, 刘健, 付少海. 电磁屏蔽用纤维素基复合材料结构设计的研究进展[J]. 纺织学报, 2025, 46(09): 36-45. |
| [2] | 史蜜, 王文聪, 范雪荣, 高卫东. 聚乙烯醇聚合度和醇解度对棉浆纱性能的影响[J]. 纺织学报, 2025, 46(09): 181-187. |
| [3] | 时虎, 王赫, 王洪杰, 潘显苗. 多孔交联纳米纤维基超级电容器隔膜的设计[J]. 纺织学报, 2025, 46(08): 45-52. |
| [4] | 梁锋, 方沿, 张伟华, 唐余玲, 李双洋, 周建飞, 石碧. 基于金属-多酚网络的胶原蛋白基纤维制备及其力学性能[J]. 纺织学报, 2025, 46(08): 10-17. |
| [5] | 沈忱思, 王欣悦, 李方. 退浆废水预氧化-絮凝一体化处理及资源化技术[J]. 纺织学报, 2025, 46(08): 173-182. |
| [6] | 陈亚娟, 郭瀚宇, 张陈恬, 李欣欣, 张雪萍. 聚乙烯醇/海藻酸钠/锦纶66复合水凝胶包芯纱的制备及其吸湿性能[J]. 纺织学报, 2025, 46(06): 103-110. |
| [7] | 洪楚玲, 丛洪莲, 赵克政, 刘博, 贺海军. 全成形防护头罩的工艺模型和实现[J]. 纺织学报, 2025, 46(06): 111-119. |
| [8] | 王春翔, 李姣, 解开放, 薛宏坤, 徐广标. 天麻多糖/聚乙烯醇静电纺抗菌保鲜膜的制备与性能[J]. 纺织学报, 2025, 46(06): 73-79. |
| [9] | 张爱丹, 王倩. 三纬组合全显结构织物的颜色预测方法[J]. 纺织学报, 2025, 46(05): 151-158. |
| [10] | 尚静雨, 蒋高明, 陈钰珊, 刘海桑, 李炳贤. 花式纱罗织物设计与三维仿真[J]. 纺织学报, 2025, 46(04): 81-88. |
| [11] | 王浙峰, 蔡王丹, 李诗雅, 徐青艺, 张红霞, 祝成炎, 金肖克. 抗菌除臭复合功能机织物的服用性能[J]. 纺织学报, 2025, 46(03): 90-99. |
| [12] | 王容容, 周洲, 冯祥, 申莹, 刘峰, 邢剑. 聚酯纤维与聚乙烯/聚丙烯双组分纤维多孔吸声材料的制备及其性能[J]. 纺织学报, 2025, 46(02): 61-68. |
| [13] | 朱雪, 钱鑫, 郝梦圆, 张永刚. MXene/碳纳米纤维膜的静电纺丝-电泳沉积复合工艺制备及其电磁屏蔽性能[J]. 纺织学报, 2025, 46(01): 1-8. |
| [14] | 叶孔萌, 秦子轩, 康桂田, 李赛, 韩德孝, 张恒. 高密度聚乙烯超细纤维篷布的闪蒸-水刺法制备及其防水透湿性[J]. 纺织学报, 2025, 46(01): 25-33. |
| [15] | 李慧敏, 刘淑强, 杜琳琳, 张曼, 吴改红. 玄武岩/聚酰亚胺三维间隔机织物的参数化建模及高温环境传热数值模拟[J]. 纺织学报, 2025, 46(01): 87-94. |
|
||