纺织学报 ›› 2025, Vol. 46 ›› Issue (11): 111-117.doi: 10.13475/j.fzxb.20241103401

• 纺织工程 • 上一篇    下一篇

基于PointNet分类模型的织物三维悬垂模型匹配

余志才1,2, 余晓娜3, 丁笑君1, 顾冰菲1()   

  1. 1.浙江理工大学 服装学院, 浙江 杭州 310018
    2.丝绸文化传承与产品设计数字化技术文化和旅游部重点实验室, 浙江 杭州 310018
    3.浙江理工大学杂志社, 浙江 杭州 310018
  • 收稿日期:2024-11-15 修回日期:2025-04-17 出版日期:2025-11-15 发布日期:2025-11-15
  • 通讯作者: 顾冰菲(1987—),女,教授,博士。主要研究方向为服装数字化技术、服装人体工程学。E-mail:gubf@zstu.edu.cn
  • 作者简介:余志才(1988—),男,讲师,博士。主要研究方向为机器学习和深度学习在织物悬垂方面的应用。
  • 基金资助:
    丝绸文化传承与产品设计数字化技术文化和旅游部重点实验室开放基金项目(20231008)

Matching of three-dimensional fabric drape models based on PointNet classification modeling

YU Zhicai1,2, YU Xiaona3, DING Xiaojun1, GU Bingfei1()   

  1. 1. School of Fashion Design & Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Key Laboratory of Silk Culture Heritage and Products Design Digital Technology, Ministry of Culture and Tourism, Hangzhou,Zhejiang 310018, China
    3. Periodicals Agency of Zhejiang Sci-Tech University,Hangzhou, Zhejiang 310018, China
  • Received:2024-11-15 Revised:2025-04-17 Published:2025-11-15 Online:2025-11-15

摘要:

为实现基于三维悬垂模型的织物匹配,提出一种基于PointNet分类模型的织物三维悬垂模型匹配方法。首先利用三维扫描装置采集50种织物的三维悬垂模型,从中筛选出11种悬垂结果差异较大的织物,其对应的三维悬垂模型组成了织物三维悬垂模型分类数据集DPN;剩余39种织物的三维悬垂模型组成织物三维悬垂模型匹配测试数据集DRC;对数据集DPN扩增后,利用重采样方法将数据集DPNDRC中的所有三维悬垂模型重采样为具有相同顶点数目和拓扑结构的三维三角形网格;然后用数据集DPN训练PointNet分类模型;最后利用训练完成的PointNet分类模型提取数据集DRC中所有织物三维悬垂模型的特征向量νPN,以该特征向量为依据实现织物三维悬垂模型的匹配。结果表明:PointNet能有效实现数据集DPN的分类,利用PointNet提取的特征向量νPN能实现数据集DRC中织物三维悬垂模型的匹配,且基于PointNet分类模型的织物三维悬垂模型召回率可达39.91%,相对于基于悬垂指标和悬垂模型曲率的织物匹配方法(召回率38.55%)更优。

关键词: 织物, 三维悬垂模型, PointNet, 深度学习算法, 三维悬垂模型匹配, 悬垂性能

Abstract:

Objective The drape performance of fabrics constitutes one of their visual attributes, and investigating fabric drape performance holds significant reference value for both design optimization and retrieval applications. To date, fabric matching or search methodology based on drape models have primarily relied on extracting multiple drape-related metrics followed by comparative analysis among these quantified parameters. With the advancement of deep learning technologies, there arises an imperative to leverage deep learning frameworks for achieving automated fabric drape model matching. Consequently, this study proposes to conduct feature extraction and similarity computation for fabric drape models employing PointNet architecture, thereby establishing a systematic approach for precise drape-based fabric matching.
Method In order to extract feature vectors from fabric 3-D drape models automatically and to realize the matching of fabric 3-D drape models, 3-D drape models of 50 fabrics were collected using 3-D scanning devices. Based on the results of the fabric 3-D drape models, 11 fabrics were selected from the 50 fabrics, which follow obviously different 3-D drape models. The 3-D drape models of these 11 fabrics comprise a classification dataset DPN, and the 3-D drape models of the remaining 39 fabrics are summarized into a test set DRC, which is adopted to test the matching of the fabric 3-D drape models. Then the 3-D drape models in the datasets DPN and DRC are resampled to fabric 3-D drape models with the same number of vertices and topology using the resampling method. A PointNet classification model is built afterwards and the dataset DPN is adopted to train the PointNet classification model. Finally, the trained PointNet is adopted to extract the feature vectors of the fabric 3-D drape model in the dataset DRC, and the feature vectors are used as the basis to realize the matching of the fabric 3-D drape model. The recall of the dataset DRC is adopted to evaluate the matching results of the fabric 3-D drape model. The influence of the number of vertices in the fabric 3-D drape model on the recall is also investigated.
Results The results show that the adopted PointNet can effectively realize the classification of the dataset DPN. When the learning rate for training the PointNet model is fixed to 0.001, the PointNet model can be trained in 20 cycles and then the model can be seen to converge to a stable level. The loss function and classification accuracy reached a steady state for both the training and validation sets. The results also show that the feature vectors extracted using PointNet enable the matching of the fabric 3-D drape model. When PointNet is trained with uniformly sorted vertices, the maximum average recall of the dataset DRC is 37.76%. When PointNet is trained with randomly ordered vertices and the number of vertices is 926, the maximum average recall of the dataset DRC is 39.91% at the maximum value. This result is superior relative to the already reported manually designed fabric 3-D drape model feature ICpca (38.56% recall).
Conclusion The PointNet model is employed to achieve feature extraction for fabric drape models and simultaneously realize fabric matching based on these models. The proposed method for extracting features from fabric drape models demonstrate greater convenience compared to conventional handcrafted design approaches. Furthermore, in the context of fabric matching using drape-based models, superior effectiveness is achieved relative to currently reported methods.

Key words: fabric, 3-D drape model, PointNet, deep learning algorithm, 3-D drape model matching, drape performance

中图分类号: 

  • TS131.9

图1

基于PointNet分类模型的织物三维悬垂模型匹配流程"

图2

织物三维悬垂模型扫描装置"

图3

数据集DPN包含的11种织物标签赋值后的三维悬垂模型"

表1

织物三维悬垂模型中顶点顺序和数目"

均匀排序顶点 散乱排序顶点
缩减倍数 实际顶点数目 缩减倍数 实际顶点数目
1 7 413 1 7 413
2 3 706 2 3 706
4 1 853 4 1 853
8 926 8 926
16 463 16 463
32 231 32 231
64 115 64 115

表2

基于ICpca特征向量的织物匹配方法召回率"

λ 召回率/% λ 召回率/%
0 26.22 0.6 38.56
0.1 26.82 0.7 38.46
0.2 28.57 0.8 36.31
0.3 31.05 0.9 31.58
0.4 34.06 1 28.11
0.5 36.97

图4

PointNet训练周期与损失函数和分类准确率的关系"

表3

顶点数目和召回率的关系(均匀排序顶点)"

缩减倍数 实际顶点数目 召回率/% 方差
1 7 413 36.86 0.37
2 3 706 37.76 0.97
4 1 853 37.02 0.85
8 926 31.59 0.93
16 463 32.69 0.52
32 231 32.39 0.59
64 115 26.25 1.42

图5

包含不同顶点数目的悬垂织物三维点云"

表4

顶点数目和召回率的关系(散乱排序顶点)"

缩减倍数 实际顶点数目 召回率/% 方差
1 7 413 37.45 1.35
2 3 706 33.84 0.51
4 1 853 37.06 1.17
8 926 39.91 1.20
16 463 38.75 0.84
32 231 34.79 1.25
64 115 29.84 0.61
[1] 佐同林, 李汝勤. 织物静态悬垂性能评价指标提取的研究[J]. 东华大学学报(自然科学版), 2004, 30(5): 87-90.
ZUO Tonglin, LI Ruqin. Study on selection of evaluation index of fabric static drape[J]. Journal of Donghua University(Natural Science), 2004, 30(5): 87-90.
[2] YU Z, ZHONG Y, GONG R, et al. New indicators on fabric drape evaluation based on three-dimensional model[J]. Textile Research Journal, 2020, 90(11/12): 1291-1300.
doi: 10.1177/0040517519888669
[3] 王寿兵, 周华, 沈毅, 等. 基于光栅成像的织物悬垂三维形态重建算法[J]. 工程图学学报, 2008, 29(2): 136-141.
WANG Shoubing, ZHOU Hua, SHEN Yi, et al. Three-dimensional shape reconstruction algorithm of fabric drapability based on raster imaging[J]. Journal of Engineering Graphics, 2008, 29(2): 136-141.
[4] MAH T, SONG G. An investigation of the assessment of fabric drape using three-dimensional body scanning[J]. Journal of the Textile Institute, 2010, 101(4): 324-335.
doi: 10.1080/00405000802417122
[5] 胡堃. 基于图像序列的织物悬垂形态重建及测量[D]. 上海: 东华大学, 2016:25-34.
HU Kun. Reconstruction and measurement of fabric drape shape based on image sequences[D]. Shanghai: Donghua University, 2016:25-34.
[6] WU G, YU Z, HUSSAIN A, et al. 3D drape reconstruction and parameterization based on smartphone video and elliptical Fourier analysis[J]. Procedia Computer Science, 2017, 108: 1552-1561.
doi: 10.1016/j.procs.2017.05.057
[7] NIWA M, SETO F. Relationship between drapability and mechanical properties of fabrics[J]. Sen'i Kikai Gakkaishi (Journal of the Textile Machinery Society of Japan), 1986, 39(11): T161-T168.
[8] BREEN D E, HOUSE D H, WOZNY M J. A particle-based model for simulating the draping behavior of woven cloth[J]. Textile Research Journal, 1994, 64(11): 663-685.
doi: 10.1177/004051759406401106
[9] JEONG Y J. A study of fabric-drape behaviour with image analysis part I: measurement, characterisation, and instability[J]. Journal of the Textile Institute, 1998, 89(1): 59-69.
doi: 10.1080/00405009808658597
[10] LOJEN Darja Žuni, JEVŠNIK Simona. Some aspects of fabric drape[J]. Fibres & Textiles in Eastern Europe, 2007, (15): 39-45.
[11] KENKARE N, LAMAR T A M, PANDURANGAN P, et al. Enhancing accuracy of drape simulation: part I: investigation of drape variability via 3D scanning[J]. Journal of the Textile Institute, 2008, 99(3): 211-218.
doi: 10.1080/00405000701489222
[12] 余志才. 基于三维模型和深度学习的织物悬垂性能研究[D]. 上海: 东华大学, 2020:60-74.
YU Zhicai. A study on fabric drape based on three-dimnesional model and deep learning[D]. Shanghai: Donghua University, 2020:60-74.
[13] 余志才, 钟跃崎, GONG R Hugh, 等. 基于三维悬垂模型和织物面密度的织物匹配[J]. 纺织学报, 2020, 41(10): 46-51.
doi: 10.13475/j.fzxb.20190306806
YU Zhicai, ZHONG Yueqi, GONG Rong Hugh, et al. Fabric matching based on three-dimensional drape model and fabric weight[J]. Journal of Textile Research, 2020, 41(10): 46-51.
doi: 10.13475/j.fzxb.20190306806
[14] CHARLES R Q, HAO S, MO K C, et al. PointNet:deep learning on point sets for 3D classification and segmentation[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2017: 77-85.
[15] CARRERA-GALLISSÀ E, CAPDEVILA X, VALLDEPERAS J. Evaluating drape shape in woven fabrics[J]. The Journal of the Textile Institute, 2017, 108(3): 325-336.
doi: 10.1080/00405000.2016.1166804
[16] COHEN-STEINER D, MORVAN J M. Restricted delaunay triangulations and normal cycle[C]// Proceedings of the Nineteenth Annual Symposium on Computational Geometry. New York: ACM, 2003: 312-321.
[1] 邓云涛, 谭艳君, 张洪松, 燕雨, 余秋雨, 林风喜, 王一鑫, 安乐乐. 织物起毛起球等级评定系统[J]. 纺织学报, 2025, 46(11): 102-110.
[2] 谢宜轩, 钟林, 徐柠浩, 黄晓梅, 曹海建. 三维深角联芳纶织物/环氧树脂复合材料的弯曲性能[J]. 纺织学报, 2025, 46(11): 118-125.
[3] 李欣田, 周玄, 王展翾, 杜忠华, 徐立志. 层数与铺层方式对多层芳纶平纹织物抗侵彻性能的影响[J]. 纺织学报, 2025, 46(11): 126-136.
[4] 高龙威, 蒋金华, 陈南梁, 邵慧奇. 经编双轴向碳纤维织物增强复合材料的冲击损伤特性[J]. 纺织学报, 2025, 46(11): 147-154.
[5] 龙红霞, 吴伟, 刘娅岚, 徐红, 毛志平. 纤维素纤维孔道吸湿溶胀行为的分子动力学模拟[J]. 纺织学报, 2025, 46(11): 155-163.
[6] 马颖媛, 李建芳, 胡毅. 活性红195在异构烷烃体系中对蚕丝织物的少水染色性能[J]. 纺织学报, 2025, 46(11): 178-187.
[7] 张帆, 蔡再生, 刘慧景, 陆少锋, 黄旭明. 高牢固光致变色棉织物的点击化学法制备及其性能[J]. 纺织学报, 2025, 46(11): 196-202.
[8] 刘爽, 任佳程, 丁恺, 陈慧敏, 岳晓丽. 纬编针织物平幅印染过程应力应变场时空演化模拟与数值实验[J]. 纺织学报, 2025, 46(11): 221-229.
[9] 尹文博, 叶帆, 杨瑞华. 基于包芯-包缠结构复合纱的锦纶/棉机织物服用性能[J]. 纺织学报, 2025, 46(11): 77-85.
[10] 唐曾华, 李宏杰, 毕思伊, 邵光伟, 蒋金华, 陈南梁, 邵慧奇. 增强结构对碳纤维/热塑性聚氨酯柔性复合材料电磁屏蔽性能的影响[J]. 纺织学报, 2025, 46(10): 111-119.
[11] 顾戚惠, 阳知乾, 王海楼, 魏发云, 张伟. 机织间隔织物增强水泥基复合材料的制备及其力学性能[J]. 纺织学报, 2025, 46(10): 120-128.
[12] 蔡丽云, 欧阳承辉, 黄泽洋, 王成成, 关玉, 付少海, 张丽平. 彩色乳胶粒的制备及其在涤纶/棉混纺织物印花中的应用[J]. 纺织学报, 2025, 46(10): 135-142.
[13] 王司宇, 王峰, 王鸿博, 苏静. L-半胱氨酸/菠萝蛋白酶协同一浴法羊毛织物防毡缩整理[J]. 纺织学报, 2025, 46(10): 152-158.
[14] 张子悦, 江红霞, 刘基宏. 单色机织物数字纹理色卡的设计与评价[J]. 纺织学报, 2025, 46(10): 167-175.
[15] 吴威涛, 韩奥博, 牛奎, 贾建辉, 尹邦雄, 向忠. 基于高泛化性图像生成与分类算法的织物瑕疵检测系统设计[J]. 纺织学报, 2025, 46(10): 227-236.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!