纺织学报 ›› 2025, Vol. 46 ›› Issue (11): 178-187.doi: 10.13475/j.fzxb.20241001701

• 染整工程 • 上一篇    下一篇

活性红195在异构烷烃体系中对蚕丝织物的少水染色性能

马颖媛1,2,3,4, 李建芳5, 胡毅1,2,3,4   

  1. 1.浙江理工大学 纺织科学与工程学院(国际丝绸学院), 浙江 杭州 310018
    2.浙江理工大学 生态染整技术教育部工程研究中心, 浙江 杭州 310018
    3.中国纺织工业联合会染整节能减排重点实验室,浙江 杭州 310018
    4.浙江理工大学嵊州创新研究院, 浙江 绍兴 312400
    5.阿克苏友联纺织印染科技有限公司, 新疆 阿克苏 843000
  • 收稿日期:2024-10-10 修回日期:2025-07-30 出版日期:2025-11-15 发布日期:2025-11-15
  • 通讯作者: 胡毅(1974—),男,教授,博士。主要研究方向为非水介质染整新技术与柔性电子智能纺织品。E-mail:huyi-v@zstu.edu.cn。
  • 作者简介:马颖媛(1999—),女,博士生。主要研究方向为活性染料非水介质染色。
  • 基金资助:
    浙江省自然科学基金项目(LY21E030023);浙江理工大学嵊州创新研究院有限公司成果培育科研项目(SYY2024C000008);浙江省援疆科技特派团(员)项目(200A003-3)

Dyeing performance of silk fabrics with Reactive Red 195 in water-less solution in isoalkane system

MA Yingyuan1,2,3,4, LI Jianfang5, HU Yi1,2,3,4   

  1. 1. College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou,Zhejiang 310018, China
    2. Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Ministry of Education,Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    3. CNTAC Key Laboratory of Dyeing and Finishing Energy-Saving Emission Reduction, China
    4. Zhejiang Sci-Tech University Shengzhou Innovation Research Institute,Shaoxing, Zhejiang 312400, China
    5. Aksu Youlian Textile Printing and Dyeing Technology Co., Ltd., Aksu, Xinjiang 843000, China
  • Received:2024-10-10 Revised:2025-07-30 Published:2025-11-15 Online:2025-11-15

摘要:

为探讨新型非水介质下活性红195对蚕丝织物的染色可行性,实现环保染色工艺,通过单因素实验优化了活性红195上染蚕丝织物的工艺条件,以染后织物的K/S值、匀染性及染料固色率作为评估指标。采用准一级及准二级动力学模型对染色动力学行为进行拟合分析,并通过Nernst、Langmuir和Freundlich热力学模型研究了活性红195在异构烷烃体系中上染蚕丝织物的热力学行为。同时,对比了异构烷烃浴染色与水浴染色的色牢度差异。结果表明:在染色温度80 ℃、染色时间40 min、浴比1∶40、碳酸钠质量浓度14 g/L,且织物经提前浸轧碱液并保持带液率100%的条件下,染后织物的K/S值最大,匀染性最佳,固色率最高;活性红195在蚕丝织物上的吸附动力学遵循准二级模型,平衡吸附行为可同时用Langmuir和Freundlich模型描述;异构烷烃浴染色织物的色牢度与水浴染色相当,且耐湿摩擦色牢度优于水浴染色。

关键词: 异构烷烃, 少水染色, 蚕丝织物, 活性染料, 染色性能, 染色动力学

Abstract:

Objective Dyeing silk fabrics with reactive dyes typically requires significant amounts of water and inorganic salts, which poses environmental challenges. Isoalkanes, which are non-toxic, colorless, and odorless environmentally friendly solvents, offer a promising alternative for sustainable dyeing processes. This study optimized the dyeing parameters and investigated the dyeing kinetics and thermodynamics of reactive dyes in isoalkane-based systems.
Method In order to investigate the feasibility of dyeing silk fabrics with reactive dyes in a non-aqueous medium and to achieve an environmentally friendly dyeing process, a single-factor experiment was conducted to optimize the dyeing conditions for silk fabrics. The dyeing kinetics of reactive dyes on silk fabric in isoalkanes were analyzed using pseudo-first-order and pseudo-second-order kinetic models, while the thermodynamic characteristics were examined using Nernst, Langmuir, and Freundlich isotherm models. Additionally, the color fastness of fabrics dyed in isoalkanes was compared with those dyed in water bath.
Results The use of isoalkane medium for dyeing silk habotai fabric with Reactive Red 195 significantly reduced water consumption. The influences of dyeing temperature, dyeing time, bath ratio, sodium carbonate concentration, and liquid-carrying rate were systematically studied. The optimal dyeing conditions were determined as dyeing temperature of 80 ℃, dyeing time of 40 min, bath ratio of 1∶40, sodium carbonate of 14 g/L, and liquid-carrying rate of 100% after pre-padding with sodium carbonate. Under these conditions, the fabric achieved the highest K/S value, the best levelness, and the highest fixation rate. The dyed silk fabric exhibited color fastness comparable to that of water bath dyeing, with superior wet rubbing fastness. The dyeing adsorption process of Reactive Red 195 on the silk fabric followed the pseudo-second-order kinetic model. The adsorption behavior was consistent with both the Langmuir and Freundlich isotherms, indicating that the dye could bind to the fiber through both chemical (covalent bonding) and physical (Van Der Waals forces, hydrogen bonding) interactions.
Conclusion A novel, water-saving method for dyeing silk fabrics with reactive red 195 using isoalkanes as a non-aqueous medium was proposed. Under optimized conditions (80 ℃, 40 min, bath ratio 1∶40, 14 g/L sodium carbonate, 100% liquid-carrying rate), the dyed fabric achieved the highest K/S value, optimal levelness, and maximum fixation rate. The adsorption process followed pseudo-second-order kinetics and conformed to both Langmuir and Freundlich isotherms, indicating dual chemical-physical interactions. Compared with the conventional water bath dyeing, the isoalkane system reduced water consumption by 90%-95%, while enabling near-zero wastewater discharge through solvent recycling (>90% recovery). Additionally, suppressed dye hydrolysis in the non-aqueous medium improved dye utilization efficiency. The dyed fabrics exhibited comparable color fastness and superior wet rubbing resistance. This approach demonstrates significant potential for sustainable textile manufacturing by integrating water-energy conservation, environmental compatibility, and industrial feasibility.

Key words: isoalkane, water-less dyeing, silk fabric, reactive dye, dyeing performance, dyeing kinetics

中图分类号: 

  • TS193.5

图1

染色工艺曲线"

图2

染色温度对染色性能的影响"

图3

染色时间对染色性能的影响"

图4

染色浴比对染色性能的影响"

图5

带液率对染色性能的影响"

图6

碳酸钠质量浓度对染色性能的影响"

图7

活性红195在异构烷烃浴和水中浴的上染速率曲线"

图8

活性红195在异构烷烃体系染色时在蚕丝织物上吸附的准一级动力学线性拟合曲线"

图9

活性红195在异构烷烃体系染色时在蚕丝织物上吸附的准二级动力学线性拟合曲线"

表1

活性红195在异构烷烃体系染色时在蚕丝织物上吸附的准二级动力学拟合系数"

温度/
qe,exp/
(mg·g-1)
k2/(g·mg-1
·min-1)
qe,cal/
(mg·g-1)
R2
70 14.907 8 0.052 99 15.060 2 0.999 8
80 15.320 3 0.047 48 15.479 9 0.999 7
90 15.965 9 0.039 79 16.155 1 0.999 6

图10

活性红195在异构烷烃浴和水浴中的吸附等温线"

图11

活性红195在异构烷烃浴和水浴中的能斯特型拟合曲线"

图12

活性红195在异构烷烃浴和水浴中的朗格缪尔型拟合曲线"

图13

活性红195在异构烷烃浴和水浴中的弗莱因德利胥型拟合曲线"

表2

非水染色与水浴染色的染色性能对比"

染色
介质
K/S
染性
固色
率/%
耐皂洗色
牢度/级
耐摩擦色
牢度/级
褪色 沾色 湿
16.32 0.47 76.16 5 5 5 4
异构烷烃 19.07 0.60 87.89 5 5 5 4~5

图14

蚕丝横截面"

表3

染色环保性对比"

染色介质 用水量/
(L·kg-1)
用盐量/
(kg·kg-1)
染料
利用率/%
异构烷烃 5~10 0 85~90
50~100 1.6 60~70
[1] 齐迪, 丁洪, 王祥荣. 儿茶素络合染料的制备及其对蚕丝织物的染色性能[J]. 纺织学报, 2023, 44(3): 111-118.
QI Di, DING Hong, WANG Xiangrong. Preparation of catechin complex dye and its dyeing properties on silk fabric[J]. Journal of Textile Research, 2023, 44(3): 111-118.
doi: 10.1177/004051757404400205
[2] 孟春丽, 曹机良, 李建辉. L型活性染料对蚕丝的低温染色研究[J]. 丝绸, 2014, 51(7): 6-10.
MENG Chunli, CAO Jiliang, LI Jianhui. Study on low-temperature dyeing of silk by L-type reactive dyes[J]. Journal of Silk, 2014, 51(7): 6-10.
[3] 缪华丽, 付承臣, 李永强, 等. 活性染料/D5悬浮体系应用于蚕丝织物染色的研究[J]. 蚕业科学, 2012, 38(6): 1051-1057.
MIAO Huali, FU Chengchen, LI Yongqiang, et al. A study on dyeing of silk fabrics with reactive dye/D5 suspension system[J]. Science of Sericulture, 2012, 38(6): 1051-1057.
[4] 宋心远, 沈煜如. 活性染料染色[M]. 北京: 中国纺织出版社, 2009: 347-352.
SONG Xinyuan, SHEN Yuru. Reactive dye dyeing[M]. Beijing: China Textile & Apparel Press, 2009: 347-352.
[5] 朱赫, 裴刘军, 郭配廷, 等. 活性黄145在无盐少水染色体系中的染色及其动力学研究[J]. 丝绸, 2024, 61(7): 74-83.
ZHU He, PEI Liujun, GUO Peiting, et al. Study on the dyeing and kinetics of Reactive Yellow 145 in the salt-free and low-water dyeing system[J]. Journal of Silk, 2024, 61(7): 74-83.
[6] 高世会. 锦纶织物超临界CO2的染色工艺[J]. 上海纺织科技, 2024, 52(8): 38-40, 63.
GAO Shihui. Polyamide dyeing in supercritical CO2[J]. Shanghai Textile Science & Technology, 2024, 52(8): 38-40, 63.
[7] SAWADA K, UEDA M. Dyeing of protein fiber in a reverse micellar system[J]. Dyes and Pigments, 2003, 58(2): 99-103.
doi: 10.1016/S0143-7208(03)00048-2
[8] 朱进梅. 超临界二氧化碳无水染色工程化技术研究[J]. 化工管理, 2017(19): 62-63.
ZHU Jinmei. Study on engineering technology of supercritical carbon dioxide anhydrous dyeing[J]. Chemical Enterprise Management, 2017(19): 62-63.
[9] 李艳玲, 董永春, 易世雄, 等. 反胶束技术在染整加工中的应用进展[J]. 印染, 2014, 40(11): 48-53.
LI Yanling, DONG Yongchun, YI Shixiong, et al. Progress on reversed micelle technology in wet processing of textiles[J]. Dyeing & Finishing, 2014, 40(11): 48-53.
[10] 张炜, 毛庆楷, 朱鹏, 等. 乙醇/水体系中改性蚕丝织物的活性染料染色动力学和热力学[J]. 纺织学报, 2020, 41(6): 86-92.
ZHANG Wei, MAO Qingkai, ZHU Peng, et al. Kinetic and thermodynamic of reactive dye study on silk fabric modification in ethanol/water system[J]. Journal of Textile Research, 2020, 41(6): 86-92.
[11] 缪华丽, 刘今强, 李永强, 等. 活性染料在D5悬浮染色体系中的水解动力学研究[J]. 纺织学报, 2013, 34(8): 77-82.
MIAO Huali, LIU Jinqiang, LI Yongqiang, et al. Study on hydrolysis kinetics of reactive dyes in dye/D5 suspending system[J]. Journal of Textile Research, 2013, 34(8): 77-82.
[12] TANG A Y L, KAN C W. Non-aqueous dyeing of cotton fibre with reactive dyes: a review[J]. Coloration Technology, 2020, 136(3): 214-223.
doi: 10.1111/cote.v136.3
[13] 裴刘军, 刘今强, 王际平. 活性染料非水介质染色的技术发展和应用前景[J]. 纺织导报, 2021(5): 32-40.
PEI Liujun, LIU Jinqiang, WANG Jiping. Technology development and application prospect of non-aqueous medium dyeing with reactive dyes[J]. China Textile Leader, 2021(5): 32-40.
[14] 郭强, 马守涛, 崔艳红, 等. MOFs材料的合成及其烷烃异构化研究进展[J]. 化学与粘合, 2023, 45(3): 253-257, 269.
GUO Qiang, MA Shoutao, CUI Yanhong, et al. Progress in synthesis and alkane isomerization of MOFs[J]. Chemistry and Adhesion, 2023, 45(3): 253-257, 269.
[15] 张尚坤, 张生强, 史建平, 等. 基于异构烷烃体系的涤纶分散染料少水染色工艺[J]. 印染, 2024, 50(1): 10-14.
ZHANG Shangkun, ZHANG Shengqiang, SHI Jianping, et al. Less water dyeing process of polyester with disperse dyes based on isomeric alkane system[J]. China Dyeing & Finishing, 2024, 50(1): 10-14.
[16] RATTANAPHANI S, CHAIRAT M, BREMNER J B, et al. An adsorption and thermodynamic study of lac dyeing on cotton pretreated with chitosan[J]. Dyes and Pigments, 2007, 72(1): 88-96.
doi: 10.1016/j.dyepig.2005.08.002
[17] SUN Q Y, YANG L Z. The adsorption of basic dyes from aqueous solution on modified peat-resin particle[J]. Water Research, 2003, 37(7): 1535-1544.
pmid: 12600381
[18] FAN J, SHAO M, MIAO J H, et al. Thermodynamic properties of cotton dyeing with indigo dyes in non-aqueous media of liquid paraffin and D5[J]. Textile Research Journal, 2021, 91(21/22): 2692-2704.
doi: 10.1177/00405175211011773
[19] TANG R C, TANG H, YANG C. Adsorption isotherms and mordant dyeing properties of tea polyphenols on wool, silk, and nylon[J]. Industrial & Engineering Chemistry Research, 2010, 49(19): 8894-8901.
doi: 10.1021/ie100052b
[20] MIRNEZHAD S, SAFAPOUR S, SADEGHI-KIAKHANI M. Dual-mode adsorption of cochineal natural dye on wool fibers: kinetic, equilibrium, and thermodynamic studies[J]. Fibers and Polymers, 2017, 18(6): 1134-1145.
doi: 10.1007/s12221-017-6923-3
[21] VIGDOROWITSCH M, PCHELINTSEV A, TSYGANKOVA L, et al. Freundlich isotherm: an adsorption model complete framework[J]. Applied Sciences, 2021, 11(17): 8078.
doi: 10.3390/app11178078
[22] PEI L J, LI H, SHEN J F, et al. Salt-free dyeing of cotton fabric and adsorption of reactive dyes in non-aqueous dyeing system: equilibrium, kinetics, and thermodynamics[J]. Cellulose, 2022, 29(8): 4753-4765.
doi: 10.1007/s10570-022-04576-9
[1] 金少特, 阎克路, 黄金杰, 陈德芳, 史向阳. 棉散纤维活性染料连续染色技术及其工业化应用[J]. 纺织学报, 2025, 46(10): 129-134.
[2] 刘宇祥, 乌婧, 徐锦龙, 谢锐敏, 王华平. 阳离子可染聚对苯二甲酸丙二醇酯预取向丝的制备及其性能[J]. 纺织学报, 2025, 46(07): 46-52.
[3] 徐桐, 徐瑞东, 王奕文, 田明伟. 纺织基触摸电子织物的制备及其触摸性能[J]. 纺织学报, 2025, 46(06): 31-37.
[4] 赵强强, 王韩星, 张奉轩, 何瑾馨, 周俊, 周兆昌, 董霞. 聚六亚甲基双胍盐酸盐改性对棉织物耐日晒色牢度的影响[J]. 纺织学报, 2025, 46(04): 109-118.
[5] 殷连博, 李家炜, 段慧敏, 宋理想, 陈玉霜, 厉巽巽, 戚栋明. 液体分散染料染色废水的循环染色[J]. 纺织学报, 2025, 46(03): 131-140.
[6] 崔芳, 张鑫卿, 殷斐, 李大伟, 雷苗苗, 谢志勇. 基于泡沫法给碱的粘胶织物活性红24无尿素印花[J]. 纺织学报, 2025, 46(02): 138-144.
[7] 解晓康, 江华, 王也, 石璐璐. α-(三氟甲基)苯基重氮酯型染料与合成纤维的反应机制[J]. 纺织学报, 2025, 46(02): 145-152.
[8] 李万新, 舒大武, 安芳芳, 韩博, 任支刚, 单巨川. 碳化钛与三价铁离子协同过硫酸钠对活性染料废水的降解[J]. 纺织学报, 2025, 46(01): 138-147.
[9] 陈锟, 许晶莹, 郑怡倩, 李加林, 洪兴华. 丝网印刷还原氧化石墨烯改性蚕丝织物的导电与电热性能[J]. 纺织学报, 2024, 45(03): 122-128.
[10] 姜绍华, 梁帅童, 裴刘军, 张红娟, 王际平. 基于概率密度函数的织物染色侵入动力学分析[J]. 纺织学报, 2023, 44(10): 90-97.
[11] 连丹丹, 王镭, 杨雅茹, 尹立新, 葛超, 卢建军. 服用聚苯硫醚纤维的制备及其性能[J]. 纺织学报, 2023, 44(08): 1-8.
[12] 韩博, 王玉霖, 舒大武, 王涛, 安芳芳, 单巨川. 活性染料染色废水的循环染色[J]. 纺织学报, 2023, 44(08): 151-157.
[13] 郭玉秋, 钟毅, 徐红, 毛志平. 拼混活性染料染色多组分定量分析方法[J]. 纺织学报, 2023, 44(07): 141-150.
[14] 唐奇, 柴丽琴, 徐天伟, 王成龙, 王直成, 郑今欢. 聚乳酸/聚3-羟基丁酸-戊酸酯共混纤维及其雪尼尔纱的染色动力学[J]. 纺织学报, 2023, 44(06): 129-136.
[15] 关振虹, 李丹, 宋金苓, 冷向阳, 宋西全. 易染间位芳纶的制备及其性能[J]. 纺织学报, 2023, 44(06): 28-32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!