纺织学报 ›› 2025, Vol. 46 ›› Issue (11): 255-263.doi: 10.13475/j.fzxb.20250504102
范书乐1,2,3, 王朝晖1,2,3(
), 刘欢欢1,2,3, 叶勤文1,2,3
FAN Shuyue1,2,3, WANG Zhaohui1,2,3(
), LIU Huanhuan1,2,3, YE Qinwen1,2,3
摘要:
为应对老年人跌倒高发带来的健康风险,提升老年人跌倒后的防护效果,减轻跌倒伤害,对老年人跌倒伤害防护智能服装的研究进展进行综述。首先梳理了老年人跌倒的发生机制和常见致伤类型,概述了跌倒伤害防护手段由传统缓冲向智能防护演进的过程;然后系统分析了跌倒伤害防护智能服装系统的整体工作原理以及智能监测与智能防护两大核心模块中的关键技术;在此基础上,进一步探讨了未来跌倒伤害防护智能服装在算法智能化、模块微型化、材料轻量化、结构适老化及功能拓展等方面的发展方向,为提升产品性能及推动其在养老照护领域的实用化发展提供理论参考。
中图分类号:
| [1] | 中国疾病预防控制中心慢性非传染性疾病预防控制中心介绍[J/OL]. 伤害医学(电子版), 2018, 7(2): 2, 65. |
| Introduction of China center for disease control and prevention center for chronic non-communicable diseases[J/OL]. Injury Medicine (Electronic Edition), 2018, 7(2): 2, 65. | |
| [2] | HADDAD Y K, BERGEN G, FLORENCE C S. Estimating the economic burden related to older adult falls by state[J]. Journal of Public Health Management and Practice, 2019, 25(2): E17-E24. |
| [3] | 刘洋. 我国社区老年人跌倒状况及居家环境影响因素研究[D]. 北京: 北京协和医学院, 2025:1-10. |
| LIU Yang. Fall prevalence and the home environmental factors among community-dwelling older adults in China[D]. Beijing: Peking Union Medical College, 2025:1-10. | |
| [4] | 于晓坤, 关娟娟, 罗洋. 女性老年人髋关节抗冲击保护裤装的设计开发[J]. 东华大学学报(自然科学版), 2020, 46(5): 733-739. |
| YU Xiaokun, GUAN Juanjuan, LUO Yang. Design and development of anti-impact hip protection pants for elderly female[J]. Journal of Donghua University (Natural Science), 2020, 46(5): 733-739. | |
| [5] | QUIGLEY P A, SINGHATAT W, TARBERT R J. Technology innovation to protect hips from fall-related fracture[J]. Physical Medicine and Rehabilitation Research, 2019, 4: 1-4. |
| [6] | XIMENES M A M, BRANDÃO M G S A, MACÊDO T S, et al. Efetividade de tecnologia educacional Para prevenção de Quedas em ambiente hospitalar[J]. Acta Paulista de Enfermagem, 2022, 35: eAPE01372. |
| [7] |
PIERLEONI P, BELLI A, PALMA L, et al. A high reliability wearable device for elderly fall detection[J]. IEEE Sensors Journal, 2015, 15(8): 4544-4553.
doi: 10.1109/JSEN.2015.2423562 |
| [8] |
AMBROSE A F, PAUL G, HAUSDORFF J M. Risk factors for falls among older adults: a review of the literature[J]. Maturitas, 2013, 75(1): 51-61.
doi: 10.1016/j.maturitas.2013.02.009 pmid: 23523272 |
| [9] | MAO L Y, LIANG D, NING Y K, et al. Pre-impact and impact detection of falls using built-In tri-accelerometer of smartphone[C]// Health Information Science. Cham: Springer International Publishing, 2014: 167-174. |
| [10] |
MORELAND B, KAKARA R, HENRY A. Trends in nonfatal falls and fall-related injuries among adults aged ≥65 years-United States, 2012-2018[J]. MMWR Morbidity and Mortality Weekly Report, 2020, 69(27): 875-881.
doi: 10.15585/mmwr.mm6927a5 |
| [11] | JAMES S L, LUCCHESI L R, BISIGNANO C, et al. The global burden of falls: global, regional and national estimates of morbidity and mortality from the global burden of disease study 2017[J]. Injury Prevention, 2020, 26(Supp 1): i3-i11. |
| [12] |
GANZ D A, LATHAM N K. Prevention of falls in community-dwelling older adults[J]. New England Journal of Medicine, 2020, 382(8): 734-743.
doi: 10.1056/NEJMcp1903252 |
| [13] |
VAISHYA R, VAISH A. Falls in older adults are serious[J]. Indian Journal of Orthopaedics, 2020, 54(1): 69-74.
doi: 10.1007/s43465-019-00037-x pmid: 32257019 |
| [14] |
CIANFEROTTI L, FOSSI C, BRANDI M L. Hip protectors: are they worth it?[J]. Calcified Tissue International, 2015, 97(1): 1-11.
doi: 10.1007/s00223-015-0002-9 pmid: 25926045 |
| [15] | 陈凌娴, 李俊, 王敏. 护膝防护性能及其功能设计研究进展[J]. 毛纺科技, 2022, 50(3): 117-123. |
| CHEN Lingxian, LI Jun, WANG Min. Research progress of the protective performance and functional design of kneepad[J]. Wool Textile Journal, 2022, 50(3): 117-123. | |
| [16] |
AHN S, CHOI D, KIM J, et al. Optimization of a pre-impact fall detection algorithm and development of hip protection airbag system[J]. Sensors and Materials, 2018, 30(8): 1743.
doi: 10.18494/SAM.2018.1876 |
| [17] |
JEONG Y, AHN S, KIM J, et al. Impact attenuation of the soft pads and the wearable airbag for the hip protection in the elderly[J]. International Journal of Precision Engineering and Manufacturing, 2019, 20(2): 273-283.
doi: 10.1007/s12541-019-00053-9 |
| [18] | ZHONG Z C, CHEN F Y, ZHAI Q, et al. A real-time pre-impact fall detection and protection system[C]// 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). New York: IEEE, 2018: 1039-1044. |
| [19] |
BIAN Z P, HOU J H, CHAU L P, et al. Fall detection based on body part tracking using a depth camera[J]. IEEE Journal of Biomedical and Health Informatics, 2015, 19(2): 430-439.
doi: 10.1109/JBHI.2014.2319372 |
| [20] |
ZIGEL Y, LITVAK D, GANNOT I. A method for automatic fall detection of elderly people using floor vibrations and sound: proof of concept on human mimicking doll falls[J]. IEEE Transactions on Bio-Medical Engineering, 2009, 56(12): 2858-2867.
doi: 10.1109/TBME.10 |
| [21] |
BOUTELLAA E, KERDJIDJ O, GHANEM K. Covariance matrix based fall detection from multiple wearable sensors[J]. Journal of Biomedical Informatics, 2019, 94: 103189.
doi: 10.1016/j.jbi.2019.103189 |
| [22] |
ROUGIER C, MEUNIER J, ST-ARNAUD A, et al. 3D head tracking for fall detection using a single calibrated camera[J]. Image and Vision Computing, 2013, 31(3): 246-254.
doi: 10.1016/j.imavis.2012.11.003 |
| [23] |
WANG S K, CHEN L, ZHOU Z X, et al. Human fall detection in surveillance video based on PCANet[J]. Multimedia Tools and Applications, 2016, 75(19): 11603-11613.
doi: 10.1007/s11042-015-2698-y |
| [24] |
LI M, XU G H, HE B, et al. Pre-impact fall detection based on a modified zero moment point criterion using data from kinect sensors[J]. IEEE Sensors Journal, 2018, 18(13): 5522-5531.
doi: 10.1109/JSEN.2018.2833451 |
| [25] |
DAHER M, EL BADAOUI EL NAJJAR M, et al. Automatic fall detection system using sensing floors[J]. International Journal of Computing and Information Sciences, 2016, 12(1): 75-82.
doi: 10.21700/ijcis |
| [26] | SHALINI V B, BEENAPATI C, A J, et al. Intelligent fall protection device for geriatric people[C]// 2024 Second International Conference on Intelligent Cyber Physical Systems and Internet of Things (ICoICI). New York: IEEE, 2024: 831-835. |
| [27] |
VAN THANH P, TRAN D T, NGUYEN D C, et al. Development of a real-time, simple and high-accuracy fall detection system for elderly using 3-DOF accelerometers[J]. Arabian Journal for Science and Engineering, 2019, 44(4): 3329-3342.
doi: 10.1007/s13369-018-3496-4 |
| [28] | WU F L, ZHAO H Y, ZHAO Y, et al. Development of a wearable-sensor-based fall detection system[J]. International Journal of Telemedicine and Applications, 2015, 2015: 576364. |
| [29] |
DE QUADROS T, LAZZARETTI A E, SCHNEIDER F K. A movement decomposition and machine learning-based fall detection system using wrist wearable device[J]. IEEE Sensors Journal, 2018, 18(12): 5082-5089.
doi: 10.1109/JSEN.2018.2829815 |
| [30] | SHI G Y, ZHANG J Y, DONG C, et al. Fall detection system based on inertial mems sensors: analysis design and realization[C]// 2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER). New York: IEEE, 2015: 1834-1839. |
| [31] |
MAO A H, MA X D, HE Y N, et al. Highly portable, sensor-based system for human fall monitoring[J]. Sensors, 2017, 17(9): 2096.
doi: 10.3390/s17092096 |
| [32] |
SUCERQUIA A, LÓPEZ J D, VARGAS-BONILLA J F. Real-life/real-time elderly fall detection with a triaxial accelerometer[J]. Sensors, 2018, 18(4): 1101.
doi: 10.3390/s18041101 |
| [33] | 涂亚庆, 陈鹏, 陈宝欣, 等. 基于离散特征的跌倒检测智能方法及应用[J]. 仪器仪表学报, 2017, 38(3):629-634. |
| TU Yaqing, CHEN Peng, CHEN Baoxin, et al. Intelligent fall detection method based on discrete feature and its application[J]. Journal of Instrumentation, 2017, 38(3): 629-634. | |
| [34] |
HUANG C N, CHAN C T. A ZigBee-based location-aware fall detection system for improving elderly tele-care[J]. International Journal of Environmental Research and Public Health, 2014, 11(4): 4233-4248.
doi: 10.3390/ijerph110404233 |
| [35] | PHU P T, HAI N T, TAM N T. A threshold algorithm in a fall alert system for elderly people[M]// 5th International Conference on Biomedical Engineering in Vietnam. Cham: Springer International Publishing, 2015: 347-350. |
| [36] | 彭亚平, 贺乾格, 柯希垚, 等. 一种基于加速度传感器的摔倒检测腰带[J]. 电子测量技术, 2018, 41(11): 117-120. |
| PENG Yaping, HE Qiange, KE Xiyao, et al. An anti-fall detection belt based on accelerometer[J]. Electronic Measurement Technology, 2018, 41(11): 117-120. | |
| [37] |
HSIEH C Y, LIU K C, HUANG C N, et al. Novel hierarchical fall detection algorithm using a multiphase fall model[J]. Sensors, 2017, 17(2): 307.
doi: 10.3390/s17020307 |
| [38] |
PUTRA I P E S, BRUSEY J, GAURA E, et al. An event-triggered machine learning approach for accelerometer-based fall detection[J]. Sensors, 2017, 18(1): 20.
doi: 10.3390/s18010020 |
| [39] | 何坚, 周明我, 王晓懿. 基于卡尔曼滤波与k-NN算法的可穿戴跌倒检测技术研究[J]. 电子与信息学报, 2017, 39(11): 2627-2634. |
| HE Jian, ZHOU Mingwo, WANG Xiaoyi. Wearable method for fall detection technology based on Kalman filter and k-NN algorithm[J]. Journal of Electronics and Information Technology, 2017, 39(11): 2627-2634. | |
| [40] | HNOOHOM N, JITPATTANAKUL A, INLUERGSRI P, et al. Multi-sensor-based fall detection and activity daily living classification by using ensemble learning[C]// 2018 International ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunications Engineering (ECTI-NCON). New York: IEEE, 2018: 111-115. |
| [41] | AL-OKBY M F R, AL-BARRAK S S. New approach for fall detection system using embedded technology[C]// 2020 IEEE 24th International Conference on Intelligent Engineering Systems (INES). New York: IEEE, 2020: 209-214. |
| [42] | LUO Y L, SHI G Y, LAM J, et al. Towards a human airbag system using/SPL MU/IMU with SVM training for falling-motion recognition[C]// 2005 IEEE International Conference on Robotics and Biomimetics-ROBIO. New York: IEEE, 2006: 634-639. |
| [43] |
TAMURA T, YOSHIMURA T, SEKINE M, et al. A wearable airbag to prevent fall injuries[J]. IEEE Transactions on Information Technology in Biomedicine, 2009, 13(6): 910-914.
doi: 10.1109/TITB.2009.2033673 pmid: 19846379 |
| [44] | Hip'Air可穿戴式安全气囊,给臀部多一重保护[EB/OL].(2018-01-09)[2025-05-08]. https://k.sina.cn/article_1646897097_6229a7c900100227p.html. |
| Hip'Air wearable airbag provides an extra layer of protection for your hips[EB/OL]. (2018-01-09) [2025-05-08]. https://k.sina.cn/article_1646897097_6229a7c900100227p.html. | |
| [45] | 苏州衣带保智能技术有限公司[EB/OL]. [2025-05-08]. http://wx.zgznhh.com/. |
| Suzhou Yidai Bao Intelligent Technology Co., Ltd.[EB/OL]. [2025-05-08]. http://wx.zgznhh.com/. | |
| [46] | 信安智囊-智能气囊防护大师[EB/OL]. [2025-05-08]. https://s-airbag.com/. |
| Security Expert-Intelligent Airbag protection master[EB/OL]. [2025-05-08]. https://s-airbag.com/. | |
| [47] | 诸文旎, 祝国成. 安全气囊织物发展现状[J]. 现代纺织技术, 2021, 29(3): 40-44. |
| ZHU Wenni, ZHU Guocheng. Development status of airbag fabric[J]. Advanced Textile Technology, 2021, 29(3): 40-44. | |
| [48] | 日本发明穿戴式安全气囊[EB/OL]. [2025-05-08]. https://news.sohu.com/20080926/n259757656.shtml. |
| Japanese invention of wearable safety airbags[EB/OL]. [2025-05-08]. https://news.sohu.com/20080926/n259757656.shtml. | |
| [49] |
AHN S, KIM J, KOO B, et al. Evaluation of inertial sensor-based pre-impact fall detection algorithms using public dataset[J]. Sensors, 2019, 19(4): 774.
doi: 10.3390/s19040774 |
| [50] |
WANG S B, SUN J X, LIU S W. Fall prevention system based on airbag protection and mechanical exoskeleton support[J]. MATEC Web of Conferences, 2021, 336: 02015.
doi: 10.1051/matecconf/202133602015 |
| [51] | Compare D-air ® Models[EB/OL]. [2025-05-08]. https://www.dainese.com/im/en/compared-air-models.html. |
| [52] |
SHI G Y, CHAN C S, LI W J, et al. Mobile human airbag system for fall protection using MEMS sensors and embedded SVM classifier[J]. IEEE Sensors Journal, 2009, 9(5): 495-503.
doi: 10.1109/JSEN.2008.2012212 |
| [53] | 刘欢欢, 孟虎, 王朝晖. 适老化智能可穿戴设计研究进展及发展趋势[J]. 纺织学报, 2024, 45(3): 236-243. |
| LIU Huanhuan, MENG Hu, WANG Zhaohui. Progress and trends in application of wearable technology for elderly population[J]. Journal of Textile Research, 2024, 45(3): 236-243. | |
| [54] | MUHAMMAD K, FARGHALY S, ALASWAD M, et al. Functional design methods for elderly clothes[J]. Journal of Textiles, Coloration and Polymer Science, 2024, 21(2):285-291. |
| [55] | LU H C, WU F G, YANG W Y, et al. The clothing design for the elderly care[M]// Human-computer interaction. design practice in contemporary societies. Cham: Springer International Publishing, 2019: 33-46. |
| [56] | 杨璨. 基于户外运动监测功能的老年服装设计[J]. 上海纺织科技, 2020, 48(5): 42-45. |
| YANG Can. Research on the design of aged clothing based on outdoor sports monitoring function[J]. Shanghai Textile Science & Technology, 2020, 48(5): 42-45. |
| [1] | 杜雨杭, 侯东昱, 齐鹏飞. 基于摩擦纳米发电机原理的智能服装供能设计与优化[J]. 纺织学报, 2025, 46(11): 211-220. |
| [2] | 崔文, 王云仪, 戴艳阳, 李俊. 服装阻力矩在作业效能评估中的应用研究进展[J]. 纺织学报, 2025, 46(08): 263-271. |
| [3] | 吴雪杨, 徐启程, 单英浩, 林孝武, 刘晨铭. 集太阳能与电磁能量收集的人体可穿戴纳电网系统设计[J]. 纺织学报, 2025, 46(07): 202-208. |
| [4] | 王旭, 李环宇, 付凡, 杨伟峰, 龚维. 镍掺杂液态金属复合纤维的连续制备及其应用[J]. 纺织学报, 2025, 46(06): 23-30. |
| [5] | 张嘉诚, 于影, 左雨欣, 顾志清, 汤腾飞, 陈洪立, 吕勇. 聚丙烯腈/二硫化钼纤维薄膜的挠曲电效应与扭转传感特性[J]. 纺织学报, 2025, 46(06): 80-87. |
| [6] | 丛洪莲, 方蕾妹, 姜菲, 李慧建, 俞旭良. 基于功能分区的横编防护外套模块化设计[J]. 纺织学报, 2025, 46(05): 227-235. |
| [7] | 王军, 殷晓玉, 周晓琪, 王思远. 智能矫姿服装设计[J]. 纺织学报, 2025, 46(04): 179-186. |
| [8] | 严艺, 朱达辉. 老年智能服装研究现状与发展趋势[J]. 纺织学报, 2025, 46(04): 244-254. |
| [9] | 马帅, 张西临, 黄宽, 王崴, 瞿珏. 中国男性飞行员体型特征分类[J]. 纺织学报, 2025, 46(01): 163-169. |
| [10] | 侯煜杰, 刘欢欢, 王朝晖. 智能坐姿矫正服装研究现状与发展趋势[J]. 纺织学报, 2024, 45(08): 250-258. |
| [11] | 王建萍, 朱妍西, 沈津竹, 张帆, 姚晓凤, 于卓灵. 软体机器人在服装领域的应用进展[J]. 纺织学报, 2024, 45(05): 239-247. |
| [12] | 王馨雨, 田明伟. 具有距离监测与辅助提示功能的自闭症儿童智能服装设计[J]. 纺织学报, 2024, 45(03): 156-162. |
| [13] | 杨光, 杨小兵, 栗丽, 姚之凤, 周川, 张明明. 新修定的化学防护服国家标准解析[J]. 纺织学报, 2024, 45(03): 163-168. |
| [14] | 王中昱, 苏云, 王云仪. 机器学习建立的个体热舒适模型及其在服装领域的应用展望[J]. 纺织学报, 2023, 44(05): 228-236. |
| [15] | 戴艳阳, 王诗潭, 王云仪, 李俊. 基于运动生物力学的防护服装活动性能研究进展[J]. 纺织学报, 2022, 43(11): 212-218. |
|
||