纺织学报 ›› 2025, Vol. 46 ›› Issue (11): 43-51.doi: 10.13475/j.fzxb.20250204901

• 纤维材料 • 上一篇    下一篇

不同动物来源脱细胞骨骼肌基质-丝素蛋白复合支架理化性质比较

曾一洪, 付开秀, 王彦, 罗健, 陈国宝()   

  1. 重庆理工大学 药学与生物工程学院, 重庆 400054
  • 收稿日期:2025-02-21 修回日期:2025-08-13 出版日期:2025-11-15 发布日期:2025-11-15
  • 通讯作者: 陈国宝(1985—),男,副教授,博士。主要研究方向为生物力学与组织修复等。E-mail:gbchen@cqut.edu.cn
  • 作者简介:曾一洪(2000—),男,硕士生。主要研究方向为生物材料与组织工程。
  • 基金资助:
    重庆市教委科学技术研究项目(KJQN202301136);国家级大学生创新创业训练计划项目(202411660010);重庆市研究生科研创新项目(CYS240722)

Comparative physicochemical properties of different species derived skeletal muscle decellularized matrix/silk fibrin composite hydrogel scaffold

ZENG Yihong, FU Kaixiu, WANG Yan, LUO Jian, CHEN Guobao()   

  1. College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
  • Received:2025-02-21 Revised:2025-08-13 Published:2025-11-15 Online:2025-11-15

摘要:

为探究不同物种来源脱细胞基质(dECM)的理化性质差异,以便在组织工程的应用中筛选适宜物种来源的dECM,将牛、鼠、猪不同动物来源的脱细胞骨骼肌(DSM)分别与丝素蛋白(SF)复合,制备SF-DSM支架。对支架的力学性能、亲水性能以及微观结构进行表征,分析不同物种来源的dECM对凝胶支架性能的影响。结果表明:不同动物来源的骨骼肌经过脱细胞处理后,其力学性能无显著性差异;牛、鼠、猪来源SF-DSM支架的弹性模量、亲水性能均无明显差异;红外光谱结果证实,SF和不同来源的DSM成功交联;不同物种来源的骨骼肌组织脱细胞前后的力学性能无明显差异,且物种间也无明显差异;SF-DSM支架的弹性模量、孔隙率、吸水性、保水性以及溶胀率均未因DSM来源不同而产生差异。

关键词: 脱细胞基质, 脱细胞骨骼肌, 丝素蛋白, 复合支架, 凝胶支架, 组织工程, 物种差异

Abstract:

Objective In order to investigate physicochemical properties between decellularized matrix (dECM) from different species sources and to select dECM from appropriate species sources for tissue engineering applications, three types of composite scaffolds consisting of decellularized skeletal muscle (DSM) from three different animal sources, namely, bovine, murine, and porcine, composited with silk protein (SF), were designed.
Method DSM from different animal sources of bovine, murine, and porcine were complexed with SF. Histological observations and mechanical properties of natural skeletal muscle tissues were tested before and after decellularization. The mechanical properties, hydrophilicity, infrared spectra and microstructure of the composite gel scaffolds were tested to determine the influence dECM from different species on the gel scaffold properties.
Results Skeletal muscles from different animal sources were decellularized to remove most of the cells and retain the extracellular matrix, and the DNA content of skeletal muscle tissues from bovine, murine, and porcine sources were (25.50±0.75) ng/mg, (40.75±3.77) ng/mg, and (27.00±9.37) ng/mg, which were less than the generally accepted minimum standard of 50 ng/mg. The mechanical properties of skeletal muscle tissues of bovine, murine and porcine origin were tested before and after decellularization, respectively. The results showed that the Young's modulus of fresh skeletal muscle tissues from bovine, murine and porcine animal sources were (1.54±1.05) kPa, (1.21±0.17) kPa, (1.88±1.83) kPa, respectively, and that of decellularized skeletal muscle tissues from bovine, murine and porcine animal sources were (1.05±0.77)kPa, (0.52±0.13) kPa, (0.89±0.61) kPa, and the results of the one-way analysis of variance showed no significant difference in the mechanical properties of skeletal muscle from bovine and porcine animal sources, and no significant difference was observed in murine skeletal muscle either, before and after decellularization treatment. The mechanical properties of three groups of SF-DSM scaffolds from bovine, murine, and porcine sources were tested separately. The results showed that the Young's modulus of SF-DSM scaffolds from bovine, murine, and porcine sources were (5.68±0.49) kPa, (7.24±0.38) kPa, and (5.48±0.44) kPa. The results of the one-way analysis of variance showed significant differences between bovine and murine scaffolds and between porcine and murine scaffolds, but no significant differences were observed between bovine and porcine scaffolds. And the compressive strength of SF-DSM scaffolds from bovine, murine, and porcine sources at 50% compression were (1 391.80±548.72) kPa, (1 316.02±321.86) kPa, and (1 093.69±285.98) kPa, respectively. The porosity of SF-DSM scaffolds from bovine, murine, and porcine sources were measured to be (89.49±3.73)%, (85.30±7.87)%, and (84.67±4.16)%, respectively, and the three groups of scaffolds were porous materials, which were favorable to the cellular adhesion growth. The hydrophilicity of the three groups of scaffolds was tested, and the water absorption rate of SF-DSM scaffolds from bovine, murine and porcine sources were (4.91±1.40) g/g、(6.60±0.04) g/g and (4.69±0.22) g/g, respectively, and the water retention rate were (3.31±0.84) g/g, (3.77±0.21) g/g, (3.02±0.38) g/g, respectively. The results of infrared spectroscopy of SF-DSM scaffolds showed successful cross-linking of SF and DSM from different sources.
Conclusion The mechanical properties of skeletal muscle tissue obtained from bovine, murine, and porcine sources were tested and did not differ significantly between species before and after decellularization. There was no difference in the compressive capacity of SF-DSM scaffolds prepared from bovine, murine, and porcine skeletal muscle decellularized matrices, and there was a significant difference in Young's modulus. No significant differences existed in swelling rate, water retention, and porosity; while the water absorption rate of murine-derived scaffolds was significantly higher than that of porcine-derived ones, but showed no difference with bovine-derived scaffolds. In conclusion the overall performance of SF-DSM scaffolds was not affected by the source of DSM.

Key words: decellularized matrix, decellularized skeletal muscle, silk protein, composite scaffold, gel scaffold, tissue engineering, species difference

中图分类号: 

  • Q819

图1

不同动物来源骨骼肌组织脱细胞表征 注:标尺为 50 μm,*P≤0.05,**P≤0.01,***P≤0.001;n=3。"

图2

不同动物来源骨骼肌组织脱细胞前后力学性能变化 注:ns表示P>0.05;n=3。"

图3

不同动物来源的SF-DSM凝胶支架形貌 注:Ⅰ—牛来源;Ⅱ—鼠来源;Ⅲ—猪来源。"

图4

不同动物来源SF-DSM凝胶支架的傅里叶红外光谱"

图5

不同动物来源SF-DSM凝胶支架的力学性能 注:*P≤0.05; **P≤0.01; n=3。"

图6

不同动物来源SF-DSM凝胶支架的亲水性能 注:***P≤0.001;n=3。"

[1] EDOUARD P, REURINK G, MACKEY A L, et al. Traumatic muscle injury[J]. Nat Rev Dis Primers, 2023, 9(1): 56.
doi: 10.1038/s41572-023-00469-8 pmid: 37857686
[2] TIDBALL J G. Mechanisms of muscle injury, repair, and regeneration[J]. Comprehensive Physiology, 2011, 1(4): 2029-2062.
doi: 10.1002/cphy.c100092 pmid: 23733696
[3] ESTEVES DE LIMA J, BLAVET C, BONNIN M A, et al. Unexpected contribution of fibroblasts to muscle lineage as a mechanism for limb muscle patterning[J]. Nature Communications, 2021, 12(1): 3851.
doi: 10.1038/s41467-021-24157-x pmid: 34158501
[4] LUO W, ZHANG H L, WAN R W, et al. Biomaterials-based technologies in skeletal muscle tissue engineering[J]. Advanced Healthcare Materials, 2024, 13(18): e2304196.
[5] SAMANDARI M, QUINT J, RODRÍGUEZ-DELAROSA A, et al. Bioinks and bioprinting strategies for skeletal muscle tissue engineering[J]. Advanced Materials, 2022, 34(12): 2105883.
doi: 10.1002/adma.v34.12
[6] DURAN P, BOSCOLO SESILLO F, COOK M, et al. Proregenerative extracellular matrix hydrogel mitigates pathological alterations of pelvic skeletal muscles after birth injury[J]. Science Translational Medicine, 2023, 15(707): eabj3138.
[7] AGMON G, CHRISTMAN K L. Controlling stem cell behavior with decellularized extracellular matrix scaffolds[J]. Current Opinion in Solid State and Materials Science, 2016, 20(4): 193-201.
doi: 10.1016/j.cossms.2016.02.001
[8] NAKAMURA N, KIMURA T, KISHIDA A. Overview of the development, applications, and future perspectives of decellularized tissues and organs[J]. ACS Biomaterials Science & Engineering, 2017, 3(7): 1236-1244.
[9] ZHU L Y, YUHAN J Y, YU H, et al. Decellularized extracellular matrix for remodeling bioengineering organoid's microenvironment[J]. Small, 2023, 19(25): 2207752.
doi: 10.1002/smll.v19.25
[10] GOLEBIOWSKA A A, INTRAVAIA J T, SATHE V M, et al. Decellularized extracellular matrix biomaterials for regenerative therapies: advances, challenges and clinical prospects[J]. Bioactive Materials, 2024, 32: 98-123.
doi: 10.1016/j.bioactmat.2023.09.017 pmid: 37927899
[11] ZHONG S, LAN Y J, LIU J Y, et al. Advances focusing on the application of decellularization methods in tendon-bone healing[J]. Journal of Advanced Research, 2025, 67: 361-372.
doi: 10.1016/j.jare.2024.01.020
[12] LIU H T, WANG Y Q, CUI K L, et al. Advances in hydrogels in organoids and organs-on-a-chip[J]. Advanced Materials, 2019, 31(50): 1902042.
doi: 10.1002/adma.v31.50
[13] WŁODARCZYK-BIEGUN M K, DEL CAMPO A. 3D bioprinting of structural proteins[J]. Biomaterials, 2017, 134: 180-201.
doi: 10.1016/j.biomaterials.2017.04.019
[14] LEAL-EGAÑA A, SCHEIBEL T. Silk-based materials for biomedical applications[J]. Biotechnology and Applied Biochemistry, 2010, 55(3): 155-167.
doi: 10.1042/BA20090229
[15] ZHENG H Y, ZUO B Q. Functional silk fibroin hydrogels: preparation, properties and applications[J]. Journal of Materials Chemistry B, 2021, 9(5): 1238-1258.
doi: 10.1039/d0tb02099k pmid: 33406183
[16] GRABSKA-ZIELIŃSKA S, SIONKOWSKA A. How to improve physico-chemical properties of silk fibroin materials for biomedical applications: blending and cross-linking of silk fibroin: a review[J]. Materials, 2021, 14(6): 1510.
doi: 10.3390/ma14061510
[17] ORAL C B, YETISKIN B, OKAY O. Stretchable silk fibroin hydrogels[J]. International Journal of Biological Macromolecules, 2020, 161: 1371-1380.
doi: S0141-8130(20)34127-1 pmid: 32791264
[18] LI X Y, YE M J, GAO Y E, et al. The systematic evaluation of physicochemical and biological properties in vitro and in vivo for natural silk fibroin nano-particles[J]. Advanced Fiber Materials, 2022, 4(5): 1141-1152.
doi: 10.1007/s42765-022-00167-2
[19] HE S J, FU X J, WANG L, et al. Self-assemble silk fibroin microcapsules for cartilage regeneration through gene delivery and immune regulation[J]. Small, 2023, 19(40): 2302799.
doi: 10.1002/smll.v19.40
[20] GILBERT-HONICK J, GRAYSON W. Vascularized and innervated skeletal muscle tissue engineering[J]. Advanced Healthcare Materials, 2020, 9(1): 1900626.
doi: 10.1002/adhm.v9.1
[21] NAIR M, JOHAL R K, HAMAIA S W, et al. Tunable bioactivity and mechanics of collagen-based tissue engineering constructs: a comparison of EDC-NHS, genipin and TG2 crosslinkers[J]. Biomaterials, 2020, 254: 120109.
doi: 10.1016/j.biomaterials.2020.120109
[22] CRAPO P M, GILBERT T W, BADYLAK S F. An overview of tissue and whole organ decellularization processes[J]. Biomaterials, 2011, 32(12): 3233-3243.
doi: 10.1016/j.biomaterials.2011.01.057 pmid: 21296410
[23] ROTH S P, GLAUCHE S M, PLENGE A, et al. Automated freeze-thaw cycles for decellularization of tendon tissue-a pilot study[J]. BMC Biotechnology, 2017, 17(1): 13.
doi: 10.1186/s12896-017-0329-6
[24] MENDIBIL U, RUIZ-HERNANDEZ R, RETEGI-CARRION S, et al. Tissue-specific decellularization methods: rationale and strategies to achieve regenerative compounds[J]. International Journal of Molecular Sciences, 2020, 21(15): 5447.
doi: 10.3390/ijms21155447
[25] NEISHABOURI A, SOLTANI KHABOUSHAN A, DAGHIGH F, et al. Decellularization in tissue engineering and regenerative medicine: evaluation, modification, and application methods[J]. Front Bioeng Biotechnol, 2022, 10: 805299.
doi: 10.3389/fbioe.2022.805299
[26] GARCIA H, BARROS A S, GONÇALVES C, et al. Characterization of dextrin hydrogels by FT-IR spectroscopy and solid state NMR spectroscopy[J]. European Polymer Journal, 2008, 44(7): 2318-2329.
doi: 10.1016/j.eurpolymj.2008.05.013
[27] TAO X S, JIANG F J, CHENG K, et al. Synthesis of pH and glucose responsive silk fibroin hydrogels[J]. International Journal of Molecular Sciences, 2021, 22(13): 7107.
doi: 10.3390/ijms22137107
[28] CONZATTI G, FAUCON D, CASTEL M, et al. Alginate/chitosan polyelectrolyte complexes: a comparative study of the influence of the drying step on physicochemical properties[J]. Carbohydrate Polymers, 2017, 172: 142-151.
doi: S0144-8617(17)30530-1 pmid: 28606520
[29] SUNTIVICH R, DRACHUK I, CALABRESE R, et al. Inkjet printing of silk nest arrays for cell hosting[J]. Biomacromolecules, 2014, 15(4): 1428-1435.
doi: 10.1021/bm500027c pmid: 24605757
[1] 曾姚, 吕金凤, 王介平, 刘荣鹏, 周婵. 三维蚕丝蛋白支架的应用研究进展[J]. 纺织学报, 2025, 46(09): 258-267.
[2] 高闻语, 陈诚, 奚晓玮, 邓林红, 刘杨. 改性丝素蛋白纤维增强胶原基角膜修复材料的制备及其性能[J]. 纺织学报, 2025, 46(08): 1-9.
[3] 江淑宁, 杨海伟, 李长龙, 郑天亮, 王宗乾. 低共熔溶剂剥离法制备丝素蛋白纳米原纤及其成膜性能[J]. 纺织学报, 2025, 46(07): 1-9.
[4] 于梦菲, 高文丽, 任婧, 曹雷涛, 彭若铉, 凌盛杰. 摩擦纳米发电机用皮芯结构纤维的制备及其性能[J]. 纺织学报, 2025, 46(05): 1-9.
[5] 罗欣, 王磊, 王筱悠, 伍韬, 张贞贞, 张一帆. 丝素蛋白多级结构的自组装机制及其重构材料研究进展[J]. 纺织学报, 2025, 46(03): 225-235.
[6] 詹克静, 杨鑫, 张应龙, 张昕, 潘志娟. 自凝聚丝素蛋白微纳米纤维膜的制备及其力学增强[J]. 纺织学报, 2025, 46(02): 10-19.
[7] 杨柳, 杜磊, 徐淮中. 熔体近场直写制备组织工程支架的研究进展[J]. 纺织学报, 2025, 46(01): 206-216.
[8] 杨鑫, 张昕, 潘志娟. 丝素纳米原纤增强再生丝素蛋白/聚乙烯醇纤维的结构与性能[J]. 纺织学报, 2024, 45(11): 1-9.
[9] 李蒙, 戴梦男, 俞杨销, 王建南. 丝素蛋白基骨修复材料的应用研究进展[J]. 纺织学报, 2024, 45(10): 224-231.
[10] 王勃翔, 徐航丹, 李佳, 林杰, 程德红, 路艳华. 柞蚕丝素纳米纤维温敏复合膜制备及其生物相容性[J]. 纺织学报, 2024, 45(09): 18-25.
[11] 雷彩虹, 俞林双, 金万慧, 朱海霖, 陈建勇. 丝素蛋白/壳聚糖复合纤维膜的制备与应用[J]. 纺织学报, 2023, 44(11): 19-26.
[12] 张子凡, 李鹏飞, 王建南, 许建梅. 丝素蛋白载药纳米粒的研究进展[J]. 纺织学报, 2023, 44(10): 205-213.
[13] 杨其亮, 杨海伟, 王邓峰, 李长龙, 张乐乐, 王宗乾. 超疏水弹性丝素蛋白纤维气凝胶的制备及其吸油性能[J]. 纺织学报, 2023, 44(09): 1-10.
[14] 姚双双, 付少举, 张佩华, 孙秀丽. 再生丝素蛋白/聚乙烯醇共混取向纳米纤维膜的制备与性能[J]. 纺织学报, 2023, 44(09): 11-19.
[15] 罗元泽, 戴梦男, 李蒙, 俞杨销, 王建南. 丝素蛋白基药物载体的应用研究进展[J]. 纺织学报, 2023, 44(09): 213-222.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!