Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (11): 39-45.doi: 10.13475/j.fzxb.20200809407

• Textile Engineering • Previous Articles     Next Articles

Characteristics of forward wrapping of hollow spindle covered spinning

AO Limin1(), TANG Wen2   

  1. 1. College of Materials and Textile Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
    2. College of Business, Jiaxing University, Jiaxing, Zhejiang 314001, China
  • Received:2020-08-25 Revised:2021-07-23 Online:2021-11-15 Published:2021-11-29

Abstract:

In order to explore the wrapping effect characteristics of hollow spindle covered spinning which is different from other spinning technologies with hollow spindle mechanism, the process route and wrapping principle of covered spinning, parallel spinning, and hollow spindle fancy twisting technology were compared, the "forward wrapping" process was adopted for the direct wrapping of the core yarn by the outer wrapping yarn in covered spinning,and speed and tension analyses were carried out on the wrapping action. The results show that the wrapping angle of the outer wrapping yarn causes the wrapping point to move when the core yarn speed and the wrapping speed are unbalanced, and the joining guide wire imposes limits on the fluctuation of the wrapping point, resulting smaller range of wrapping twist variation. A suitable core yarn tension was found a necessary guarantee for achieving normal wrapping, and the deviation of the wrapping point from the center line caused by improper tension matching would cause change in wrapping structure. The wrapping tension causes the core yarn to rotate in the same direction as the wrapping direction, which has a counteracting effect on the wrapping twist.

Key words: hollow spindle covered spinning, wrapping effect, wrapping point, forward wrapping, spinning

CLC Number: 

  • TS104.1

Fig.1

Two configuration forms of hollow spindle wrapping. (a) Reverse wrapping; (b) Forward wrapping"

Fig.2

Balloon formed by outer wrapping yarn. (a) Balloon diameter larger than side plate diameter of spindle tube; (b) Balloon diameter smaller than side plate diameter of spindle tube"

Fig.3

Inlacing of outer wrapping yarn to core yarn (a) and decomposition of inlacing speed (b)"

Fig.4

Upper and lower limits of wrapping point"

Fig.5

Movement of winding point. (a) Wrapping point at upper limit; (b) VC=8 m/min; (c) VC=7 m/min; (d) VC=6 m/min; (e) VC=5 m/min (lower limit)"

Fig.6

Tension action of outer wrapping yarn on core yarn during inlacing. (a) Lateral view; (b) Top view"

Fig.7

Tension decomposition of outer wrapping yarn"

Fig.8

Balloon morphology when wrapping point deviates from center line"

[1] 刘荣清. 空心锭包缠纺的发展和展望[J]. 纺织学报, 1986, 7(11):61-63.
LIU Rongqing. Development and prospect of hollow spindle wrapping spinning[J]. Journal of Textile Research, 1986, 7(11):61-63.
[2] 李鑫, 李杰新, 谭丛德, 等. 空心锭纺包缠纱工艺研究[J]. 上海纺织科技, 2000, 28(5):20-22.
LI Xin, LI Jiexin, TAN Congde, et al. Research on hollow spindle wrapping spinning process[J]. Shanghai Textile Science & Technology, 2000, 28(5):20-22.
[3] 崔平军. 空心锭子纺纱方式分析[J]. 江苏纺织, 2010(4):58-60.
CUI Pingjun. Analysis of hollow spindle spinning method[J]. Jiangsu Textile, 2010(4):58-60.
[4] 敖利民, 江魁, 郁崇文, 等. 包缠法控制苎麻纱毛羽的研究[C]∥ 第十七届全国新型纺纱学术会论文集.北京:中国纺织工程学会, 2014:225-232.
AO Limin, JIANG Kui, YU Chongwen, et al. Study on controlling hairiness of ramie yarn by wrapping method[C]∥ Proceedings of the 17th National Conference on New Spinning. Beijing: China Textile Engineering Society, 2014: 225-232.
[5] 潘杰, 高福坤. 一种免刺痒麻芯包覆纱及其加工方法:103382603A [P]. 2013-11-06.
PAN Jie, GAO Fukun, A prickle-free ramie core covered yarn and its processing method: 103382603A [P]. 2013-11-06.
[6] 李丹, 田琳. 银/棉包覆纱织物性能研究[J]. 化纤与纺织技术, 2014, 43(3):19-23.
LI Dan, TIAN Lin. Research of fabric of silver-cotton warp yarn[J]. Chemical Fiber & Textile Technology, 2014, 43(3):19-23.
[7] 熊祥章, 裴泽光, 陈革. 基于形状记忆合金丝包覆纱的针织物致动器研究[J]. 纺织学报, 2020, 41(5):50-57.
XIONG Xiangzhang, PEI Zeguang, CHEN Ge. Study on actuating force of knit actuator based on covered yarn with shape memory alloy wire as core[J]. Journal of Textile Research, 2020, 41(5):50-57.
[8] 潘杰, 高福坤, 敖利民. 一种双包结构混色纱:204401204U [P]. 2015-06-17.
PAN Jie, GAO Fukun, AO Limin, A mixed color yarn with twice wrapped structure: 204401204U[P]. 2015-06-17.
[9] 潘杰, 高福坤, 敖利民. 一种双包结构麻灰纱:204401209U [P]. 2015-06-17.
PAN Jie, GAO Fukun, A hemp grey yarn with twice wrapped structure: 204401209U[P]. 2015-06-17.
[10] 敖利民, 唐雯, 王爱林. 亚麻/有色涤纶长丝包缠复合纱的外观与性能[J]. 纺织学报, 2019, 40(8):40-47.
AO Limin, TANG Wen, WANG Ailin. Appearance and performance of linen/colored polyester wrapping-colored composite yarn[J]. Journal of Textile Research, 2019, 40(8):40-47.
[11] 谢春萍, 傅佳佳, 杨瑞华, 等. 新型纺纱[M].3版. 北京: 中国纺织出版社, 2020:162-170.
XIE Chunping, FU Jiajia, YANG Ruihua, et al. New spinning[M]. 3rd ed. Beijing: China Textile & Apparel Press, 2020: 162-170.
[12] 张巧峰, 杨崇倡. 恒捻圈包覆纱的开发[J]. 毛纺科技, 2017, 45(5):6-10.
ZHANG Qiaofeng, YANG Chongchang. Development of uniform yarn coil covered yarn[J]. Wool Textile Journal, 2017, 45(5):6-10.
[13] 张巧峰, 杨崇倡. 高捻度细旦包覆纱的高速化生产[J]. 上海纺织科技, 2017, 45(5):30-32,48.
ZHANG Qiaofeng, YANG Chongchang. High-speed production of the high-twist and fine denier covered yarn[J]. Shanghai Textile Science & Technology, 2017, 45(5):30-32, 48.
[1] XIA Zhigang, XU Ao, WAN Youshun, WEI Jiang, ZHANG Huixia, TANG Jiandong, ZHENG Minbo, GUO Qinsheng, DING Cailing, YANG Shengming, XU Weilin. Analysis of new five-element-integration spinning technology based on human-machine-material-method-environment for carbon neutralization [J]. Journal of Textile Research, 2022, 43(01): 58-66.
[2] MIN Xiaobao, PAN Zhijuan. Quality and performance of biomass fiber/pineapple leaf fiber multi-component blended yarn [J]. Journal of Textile Research, 2022, 43(01): 74-79.
[3] LI Longlong, WEI Peng, WU Cuixia, YAN Jinfei, LOU Hejuan, ZHANG Yifeng, XIA Yumin, WANG Yanping, WANG Yimin. Synthesis and properties of bio-based liquid crystal copolyester fiber based on p-hydroxyphenyl propionic acid [J]. Journal of Textile Research, 2022, 43(01): 9-14.
[4] XU Shilin, YANG Shiyu, ZHANG Yaru, HU Liu, HU Yi. Preparation and properties of thermoplastic polyurethane/tefluororone amorphous fluoropolymer superhydrophobic nanofiber membranes [J]. Journal of Textile Research, 2021, 42(12): 42-42.
[5] JIA Lin, WANG Xixian, LI Huanyu, ZHANG Haixia, QIN Xiaohong. Preparation and properties of polyacrylonitrile/BaTiO3 composite nanofibrous filter membrane [J]. Journal of Textile Research, 2021, 42(12): 34-41.
[6] WANG Shudong, DONG Qing, WANG Ke, MA Qian. Preparation and properties of polylactic acid nanofibrous membrane reinforced by reduced graphene oxide [J]. Journal of Textile Research, 2021, 42(12): 28-33.
[7] CHEN Zihan, YAO Yongbo, SHENG Junlu, YAN Zhiyong, ZHANG Yumei, WANG Huaping. Preparation and properties of cellulose/calcium alginate blend fiber [J]. Journal of Textile Research, 2021, 42(12): 15-20.
[8] WANG Bobo, ZHENG Xiaohu, SHEN Xingwang, BAO Jinsong, LIU Tianyuan. Method for data tracing based on Elasticsearch during spinning production [J]. Journal of Textile Research, 2021, 42(12): 55-62.
[9] CHEN Xian, LI Mengmeng, ZHAO Xin, DONG Jie, TENG Cuiqing. Preparation and microstructure control of aerogel fibers based on aramid nanofibers [J]. Journal of Textile Research, 2021, 42(11): 17-23.
[10] ZHOU Yuanyuan, ZHENG Yuming, WU Xiaoqiong, SHAO Zaidong. Research progress of performance enhancement methods for electrospun nanofiber-based photocatalyst [J]. Journal of Textile Research, 2021, 42(11): 179-186.
[11] HE Ju, LIU Xiaohui, SU Xiaowei, LIN Shenggen, REN Yuanlin. Preparation and properties of viscose fibers modified with star-shaped halogen-free flame retardants [J]. Journal of Textile Research, 2021, 42(10): 34-40.
[12] WU Qinxin, HOU Chengyi, LI Yaogang, ZHANG Qinghong, QIN Zongyi, WANG Hongzhi. Radiative cooling nanofiber medical fabrics and sensor system integration [J]. Journal of Textile Research, 2021, 42(09): 24-30.
[13] QUAN Zhenzhen, WANG Yihan, ZU Yao, QIN Xiaohong. Jet formation mechanism and film forming characteristics of multi-curved surface sprayer for electrospinning [J]. Journal of Textile Research, 2021, 42(09): 39-45.
[14] CAO Yuanming, ZHENG Mi, LI Yifei, ZHAI Wangyi, LI Liyan, CHANG Zhuningzi, ZHENG Min. Preparation of MoS2/polyurethane composite fibrous membranes and their photothermal conversion properties [J]. Journal of Textile Research, 2021, 42(09): 46-51.
[15] ZHANG Yaru, HU Yi, CHENG Zhongling, XU Shilin. Preparation and energy storage properties of polyacrylonitrile-based Si/C/carbon nanotube composite carbon nanofiber membrane [J]. Journal of Textile Research, 2021, 42(08): 49-56.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 33 -34 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 35 -36 .
[3] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 107 .
[4] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 109 -620 .
[5] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(01): 1 -9 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 101 -102 .
[7] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 105 -107 .
[8] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 108 -110 .
[9] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 111 -113 .
[10] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 114 -115 .