Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (04): 124-132.doi: 10.13475/j.fzxb.20210506109

• Apparel Engineering • Previous Articles     Next Articles

Dynamic finite element modeling and simulation of single layer clothing ease allowance

YU Yukun1, SUN Yue1,2,3, HOU Jue1,2,3, LIU Zheng1,2,3(), YICK Kitlun4   

  1. 1. School of Fashion Design & Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Apparel Engineering Research Center of Zhejiang Province, Hangzhou, Zhejiang 310018, China
    3. Zhejiang Provincial Engineering Laboratory of Clothing Digital Technology, Hangzhou, Zhejiang 310018, China
    4. Institute of Textiles & Clothing, The Hong Kong Polytechnic University, Hong Kong 999077, China
  • Received:2021-05-24 Revised:2022-01-07 Online:2022-04-15 Published:2022-04-20
  • Contact: LIU Zheng E-mail:koala@zstu.edu.cn

Abstract:

In order to investigate the dynamic change of ease allowance of clothing during motion, a dynamic simulation model for single layer clothing ease allowance using finite element method was proposed, simulating the mechanical state and clothing ease allowance generation mechanism. Based on the three-dimensional (3-D) point cloud data, 3-D sub-models of human body and clothing were constructed. Instron universal extensometer and 3-D motion capture system were used to measure the physical properties of clothing and the coordinates of human trunk during dynamic motion, then a finite element model of a single layer clothing ease allowance was established. The finite element simulation software was used for dynamic simulation, finally, the ease allowance obtained by simulation is compared and verified with the ease allowance in real motion state. The results show that the minimum average difference between the simulation and experiment is 0.24 mm, and the minimum relative mean square error is 1.81 mm.The simulation coordinate value is significantly correlated with that in experiment at the level of 0.01 (two tails). It indicated that the simulation results can accurately predict the dynamic garment ease allowance around the chest during motion.

Key words: clothing ease allowance, finite element analysis, numerical simulation, three-dimensional modeling, dynamic simulation

CLC Number: 

  • K826.16

Fig.1

Human-clothing contact coordinate system"

Fig.2

Modeling process of human body garment 3-D model"

Tab.1

Material parameters of finite element model"

结构 材料属性 密度/
(kg·m-3)
材料参数
C10/
kPa
C01/
kPa
C11/
kPa
C20/
kPa
C02/
kPa
弹性模
量/kPa
泊松比
乳房 Mooney-Rivlin 1.00×103 0.25 0.26 1.87 3.90 3.40
外部软组织 各向同性 1.00×103 150.00 0.30
服装 各向同性 1.43×103 0.20 0.19

Fig.3

Test diagram of 3-D motion capture instrument. (a) Sticky marking ball; (b) Sticky marking ball of computer-perspective"

Fig.4

Finite element model of human body(a) and clothing(b)"

Tab.2

Human body and clothing contact types"

接触体名称 接触体类型 服装 乳房 外部软组织 躯干
服装 变形体 T T
乳房 变形体 T G G
外部软组织 变形体 T G G
躯干 刚体

Fig.5

Boundary conditions in finite element simulation. (a) Gravity boundary conditions of human body;(b) Gravity boundary conditions of clothing;(c) Displacement boundary conditions of human torso"

Fig.6

Cloud picture of displacement in state of dressing at different times"

Fig.7

Net body displacement cloud picture at different times"

Fig.8

Gap simulation value at different times"

Fig.9

Movement trend verification of main pares of human bust section. (a) Movement trend of front center; (b) Movement trend of left BP point; (c) Movement trend of right BP point; (d) Movement trend of back center"

Fig.10

Movement trend verification of main parts of clothing bust section. (a) Movement trend of front center; (b) Movement trend of left BP point; (c) Movement trend of right BP point; (c) Movement trend of back center"

Tab.3

Correlation analysis of clearance"

相关性系数 T1 T2 T3 T4 T5 T6
皮尔逊相关系数 0.830 0.706 0.722 0.733 0.411 0.828
显著性(双尾)系数 0.001 0.010 0.008 0.007 0.185 0.001
[1] 徐继红, 张文斌. 人体与服装特征曲面间距离松量的影响因子[J]. 纺织学报, 2009, 30(5):104-108.
XU Jihong, ZHANG Wenbin. Influential factors of distance ease on typical cross sections[J]. Journal of Textile Research, 2009, 30(5): 104-108.
[2] 张爱萍, 王云仪, 姚怡. 服装胸围截面上距离松量的分配关系[J]. 纺织学报, 2012, 33(6):76-80.
ZHANG Aiping, WANG Yunyi, YAO Yi. Study on relationships between garment's distance ease distributions at bust section[J]. Journal of Textile Research, 2012, 33(6):76-80.
[3] 胡紫婷, 郑晓慧, 冯铭铭, 等. 衣下空气层对透气型防护服热阻和湿阻的影响[J]. 纺织学报, 2019, 40(11):145-150,160.
HU Ziting, ZHENG Xiaohui, FENG Mingming, et al. Influence of air gap on thermal and moisture properties of permeable protective clothing[J]. Journal of Textile Research, 2019, 40(11):145-150,160.
[4] LIU Zheng, HE Qin, ZOU Fengyuan, et al. Apparel ease distribution analysis using three-dimensional motion capture[J]. Textile Research Journal, 2019, 89(19/20): 4323-4335.
doi: 10.1177/0040517519832842
[5] WANG Shitan, WANG Xiuhua, WANG Yunyi. Effects of clothing ease and body postures on the air gap and clothing coverage[J]. International Journal of Clothing Science and Technology, 2019, 31(4): 578-594.
doi: 10.1108/IJCST-12-2018-0158
[6] LI Jituo, YE Juntao, WANG Yangsheng, et al. Fitting 3D garment models onto individual human models[J]. Computers & Graphics, 2010, 34(6): 742-755.
doi: 10.1016/j.cag.2010.07.008
[7] THOMASSEY S, BRUNIAUX P. A template of ease allowance for garments based on a 3D reverse methodology[J]. International Journal of Industrial Ergonomics, 2013, 43(5): 406-416.
doi: 10.1016/j.ergon.2013.08.002
[8] LIU Hong. A study of the relationship between clothing pressure and garment bust strain, and Young's modulus of fabric, based on a finite element model[J]. Textile Research Journal, 2011, 81(13): 1307-1319.
doi: 10.1177/0040517510399961
[9] SUN Yue, CHEN Lihua, YICK Kitlun, et al. Optimization method for the determination of Mooney-Rivlin material coefficients of the human breasts in-vivo using static and dynamic finite element models[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 90: 615-625.
doi: S1751-6161(18)30500-9 pmid: 30500699
[10] SUN Yue, YICK Kitlun, YU Winnie, et al. 3D bra and human interactive modeling using finite element method for bra design[J]. Computer-Aided Design, 2019, 114: 13-27.
doi: 10.1016/j.cad.2019.04.006
[11] LIN Yinglei. Finite element modeling of male leg and sportswear: contact pressure and clothing deformation[J]. Textile Research Journal, 2011, 81(14): 1470-1476.
doi: 10.1177/0040517510395997
[12] YEUNG K W, LI Y, ZHANG X. A 3D biomechanical human model for numerical simulation of garment-body dynamic mechanical interactions during wear[J]. Journal of The Textile Institute, 2004, 95(1-6): 59-79.
doi: 10.1533/joti.2001.0050
[13] ZHANG X. Numerical simulation of 3D dynamic garment pressure[J]. Textile Research Journal, 2002, 72(3): 245-252.
doi: 10.1177/004051750207200311
[14] MCLEAN A Robb, RICHARDS Michael E, CRANDALL Cameron S, et al. Ultrasound determination of chest wall thickness: implications for needle thoracostomy[J]. The American Journal of Emergency Medicine, 2011, 29(9): 1173-1177.
doi: 10.1016/j.ajem.2010.06.030
[15] 卢天健, 徐峰. 皮肤的力学性能概述[J]. 力学进展, 2008(4):393-426.
LU Tianjian, XU Feng. Mechanical properties of skin[J]. Advances in Machanics, 2008(4):393-426.
[16] SANNYAL Mridul, MUKADDES Abul Mukid Mohammad, RAHMAN Md Matiar, et al. Analysis of the effect of external heating in the human tissue: a finite element approach[J]. Polish Journal of Medical Physics and Engineering, 2020, 26(4): 251-262.
doi: 10.2478/pjmpe-2020-0030
[17] 应欣, 程碧莲, 刘正, 等. 体表形态凸角对腰围间隙量的影响[J]. 纺织学报, 2019, 40(10):152-157.
YING Xin, CHENG Bilian, LIU Zheng, et al. Influence of body surface convex angle on waist section ease[J]. Journal of Textile Research, 2019, 40(10):152-157.
[18] RUI Dan. Numerical simulation of the relationship between pressure and displacement for the top part of men's socks[J]. Textile Research Journal, 2011, 81(2): 128-136.
doi: 10.1177/0040517510377830
[19] PASQUALE Franciosa, SALVATORE Gerbino, ANTONIO Lanzotti, et al. Improving comfort of shoe sole through experiments based on CAD-FEM modeling[J]. Medical Engineering & Physics, 2013, 35(1): 36-46.
doi: 10.1016/j.medengphy.2012.03.007
[20] 康雪莲, 应柏安, 张欣, 等. 接触状态下男上装基础版型对人体压力分布的有限元模型[J]. 纺织学报, 2018, 39(11):116-121.
KANG Xuelian, YING Boan, ZHANG Xin, et al. Finite element model for evaluating pressure distribution of men's basic pattern on upper body[J]. Journal of Textile Research, 2018, 39(11):116-121.
[21] WANG Z, NEWTON E, NG R, et al. Ease distribution in relation to the X-line style jacket: part 1: development of a mathematical model[J]. Journal of The Textile Institute, 2006, 97(3):247-256.
doi: 10.1533/joti.2005.0239
[22] 李涛, 杜磊, 孙洁, 等. 短裤特征截面廓形分析及间隙量预测模型构建[J]. 纺织学报, 2019, 40(5):113-118.
LI Tao, DU Lei, SUN Jie, et al. Typical cross section silhouette analysis and interval prediction model construction of shorts[J]. Journal of Textile Research, 2019, 40(5):113-118.
[23] 徐继红, 张文斌, 夏明. 人体与服装特征曲面间廓体松量分配关系[J]. 天津工业大学学报, 2009, 28(5):27-32.
XU Jihong, ZHANG Wenbin, XIA Ming. Vacant ease distribution relationship between body and garment[J]. Journal of Tiangong University, 2009, 28(5):27-32.
[1] LIU Yisheng, ZHOU Xinlei, LIU Dandan. Effect of yarn's initial position on yarn tucked-in in pneumatic tucked-in selvedge apparatus [J]. Journal of Textile Research, 2022, 43(03): 168-175.
[2] WANG Di, KE Ying, WANG Hongfu. Parametric fashion design based on Voronoi graphics [J]. Journal of Textile Research, 2021, 42(12): 131-137.
[3] QIAN Miao, HU Hengdie, XIANG Zhong, MA Chengzhang, HU Xudong. Flow and heat transfer characteristics of non-uniform heat-pipe heat exchanger [J]. Journal of Textile Research, 2021, 42(12): 151-158.
[4] LIANG Zhuo, JIA Guoxin, REN Jiazhi, LI Jinjian. Deformation and stress analysis on nippers of cotton combing machine [J]. Journal of Textile Research, 2021, 42(12): 145-150.
[5] ZHOU Haobang, SHEN Min, YU Lianqing, XIAO Shichao. Effect of structural parameter of relay nozzles on characteristics of flow field in profiled reed of air jet loom [J]. Journal of Textile Research, 2021, 42(11): 166-172.
[6] MOU Haolei, XIE Jiang, PEI Hui, FENG Zhenyu, GENG Hongzhang. Ballistic impact tests and numerical simulation of aramid fabric and containment ring [J]. Journal of Textile Research, 2021, 42(11): 56-63.
[7] QUAN Zhenzhen, WANG Yihan, ZU Yao, QIN Xiaohong. Jet formation mechanism and film forming characteristics of multi-curved surface sprayer for electrospinning [J]. Journal of Textile Research, 2021, 42(09): 39-45.
[8] LU Jun, WANG Fujun, LAO Jihong, WANG Lu, LIN Jing. Finite element analysis of braided artificial ligaments of different structures under combined loading [J]. Journal of Textile Research, 2021, 42(08): 84-89.
[9] ZHOU Mengmeng, JIANG Gaoming, GAO Zhe, ZHENG Peixiao. Research progress in weft-knitted biaxial tubular fabric reinforced composites [J]. Journal of Textile Research, 2021, 42(07): 184-191.
[10] LÜ Changliang, HAO Zhiyuan, CHEN Huimin, ZHANG Huile, YUE Xiaoli. Finite element analysis of loop shape in weft knitted fabrics with small deformation based on homogenization theory [J]. Journal of Textile Research, 2021, 42(03): 21-26.
[11] SHI Qianqian, WANG Jiang, ZHANG Yuze, LIN Huiting, WANG Jun. Numerical analysis on formation mechanism of airflow field in rotor spinning unit [J]. Journal of Textile Research, 2021, 42(02): 180-184.
[12] FENG Duanpei, SHANG Yuanyuan, LI Jun. Multi-scale simulation of impact failure behavior for 4- and 5-directional 3-D braided composites [J]. Journal of Textile Research, 2020, 41(10): 67-73.
[13] CHU Xi, QIU Hua. Flow simulations of ring swirl nozzle under different inlet pressure conditions [J]. Journal of Textile Research, 2020, 41(09): 33-38.
[14] WU Xianyan, SHENTU Baoqing, MA Qian, JIN Limin, ZHANG Wei, XIE Sheng. Finite element analysis on structural failure mechanism ofthree-dimensional orthogonal woven fabrics subjected to impact of spherical projectile [J]. Journal of Textile Research, 2020, 41(08): 32-38.
[15] DAI Xin, LI Jing, CHEN Chen. Finite element simulation on wear resistance of copper-plated carbon fiber tows [J]. Journal of Textile Research, 2020, 41(06): 27-35.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!