Journal of Textile Research ›› 2025, Vol. 46 ›› Issue (06): 56-62.doi: 10.13475/j.fzxb.20241202502
• Column of Youth Scientists′Salon on New Fiber Materials and Green Textile Development • Previous Articles Next Articles
DING Zhenhua1,2, YUAN Kaiyu2, ZHOU Jing2, YE Dongdong2(
)
CLC Number:
| [1] | ARAMENDIA E, BROCKWAY P, TAYLOR P, et al. Estimation of useful-stage energy returns on investment for fossil fuels and implications for renewable energy systems[J]. Nature Energy, 2024, 9(7): 803-816. |
| [2] | SINCLAIR K, COPPING A, MAY R, et al. Resolving environmental effects of wind energy[J]. WIREs Energy and Environment, 2018. DOI: 10.1002/wene.291. |
| [3] | SAMU R, FAHRIOGLU M. An analysis on the potential of solar photovoltaic power[J]. Energy Sources, Part B: Economics, Planning, and Polic, 2017, 12(10): 883-899. |
| [4] |
WAGNER B, HAUER C, HABERSACK H. Current hydropower developments in Europe[J]. Current Opinion in Environmental Sustainability, 2019, 37: 41-49.
doi: 10.1016/j.cosust.2019.06.002 |
| [5] | LI S, WANG J, LV Y, et al. Nanomaterials-based nanochannel membrane for osmotic energy harves-ting[J]. Advanced Functional Materials, 2024. DOI: 10.1002/adfm.202308176. |
| [6] | ZHANG Z, WEN L, JIANG L. Nanofluidics for osmotic energy conversion[J]. Nature Reviews Materials, 2021, 6(7): 622-639. |
| [7] |
HOU Q, DAI Y, ZHANG X, et al. Commercial nafion membranes for harvesting osmotic energy from proton gradients that exceed the commercial goal of 5.0 W/m2[J]. ACS Nano, 2024, 18(19): 12580-12587.
doi: 10.1021/acsnano.4c04152 pmid: 38696339 |
| [8] | HAN J, KO Y, NAM Y, et al. Thermally enhanced osmotic power generation from salinity difference[J]. Journal of Membrane Science, 2023. DOI: 10.1016/j.memsci.2023.121451. |
| [9] | GUO Y, SUN X, DING S, et al. Charge-gradient sulfonated poly(ether ether ketone) membrane with enhanced ion selectivity for osmotic energy conver-sion[J]. ACS Nano, 2024, 18(9): 7161-7169. |
| [10] | XIANG Z, CHEN Y, XIE Z, et al. Sustainable chitin-derived 2D nanosheets with hierarchical ion transport for osmotic energy harvesting[J]. Advanced Energy Materials, 2024. DOI: 10.1002/aenm.202402304. |
| [11] | LIN C, HAO J, ZHAO J, et al. A facile strategy for the preparation of carbon nanotubes/polybutadiene crosslinked composite membrane and its application in osmotic energy harvesting[J]. Journal of Colloid and Interface Science, 2024, 654: 840-847. |
| [12] | ZHANG Z, SHEN W, LIN L, et al. Vertically transported graphene oxide for high-performance osmotic energy conversion[J]. Advanced Science, 2020. DOI: 10.1002/advs.202000286. |
| [13] | CHANG L, XIAO X. The review of MXenes for osmotic energy harvesting: synthesis and properties[J]. Diamond and Related Materials, 2023. DOI: 10.1016/j.diamond.2023.109971. |
| [14] | WANG C, TANG J, LI L, et al. Ultrathin self-standing covalent organic frameworks toward highly-efficient nanofluidic osmotic energy generator[J]. Advanced Functional Materials, 2022. DOI: 10.1002/adfm.202204068. |
| [15] | CHEN C, BERGLUND L, BURGERT I, et al. Wood nanomaterials and nanotechnologies[J]. Advanced Materials, 2021. DOI: 10.1002/adma.202006207. |
| [16] | WU C, LI J, ZHANG Y, et al. Cellulose dissolution, modification, and the derived hydrogel: a review[J]. ChemSusChem, 2023. DOI: 10.1002/cssc.202300518. |
| [17] | SHI J, SUN X, ZHANG Y, et al. Molecular self-assembled cellulose enabling durable, scalable, high-power osmotic energy harvesting[J]. Carbohydrate Polymers, 2024. DOI: 10.1016/j.carbpol.2023.121656. |
| [18] | ROCHA A, VENTURIM B, ELLWANGER E, et al. Bacterial cellulose: strategies for its production in the context of bioeconomy[J]. Journal of Basic Microbiology, 2023, 63(3/4): 257-275. |
| [19] | HE S, ZHAO X, WANG E, et al. Engineered wood: sustainable technologies and applications[J]. Annual Review of Materials Research, 2023, 53: 195-223. |
| [20] | JIA C, CHEN C, KUANG Y, et al. From wood to textiles: top-down assembly of aligned cellulose nanofibers[J]. Advanced Materials, 2018. DOI: 10.1002/adma.201801347. |
| [21] | TU H, LI X, LIU Y, et al. Recent progress in regenerated cellulose-based fibers from alkali/urea system via spinning process[J]. Carbohydrate Polymers, 2022. DOI: 10.1016/j.carbpol.2022.119942. |
| [22] | MAO Y, HU L, REN Z. Engineered wood for a sustainable future[J]. Matter, 2022, 5(5): 1326-1329. |
| [23] | WANG H, CHEN C, FANG L, et al. Effect of delignification technique on the ease of fibrillation of cellulose II nanofibers from wood[J]. Cellulose, 2018, 25(12): 7003-7015. |
| [24] |
LI T, ZHANG X, LACEY S, et al. Cellulose ionic conductors with high differential thermal voltage for low-grade heat harvesting[J]. Nature Materials, 2019, 18(6): 608-613.
doi: 10.1038/s41563-019-0315-6 pmid: 30911121 |
| [25] | CHEN G, LI T, CHEN C, et al. A highly conductive cationic wood membrane[J]. Advanced Functional Materials, 2019. DOI: 10.1002/adfm.201902772. |
| [26] | ATALLA R. The role of the hemicelluloses in the nanobiology of wood cell walls: a systems theoretic perspective[J]. Proceedings of the hemicelluloses workshop, 2005, 10-12: 37-57. |
| [27] | KONG W, CHEN C, CHEN G, et al. Wood ionic cable[J]. Small, 2021. DOI: 10.1002/smll.202008200. |
| [28] | CHEN C, LIU D, HE L, et al. Bio-inspired nanocomposite membranes for osmotic energy harves-ting[J]. Joule, 2020, 4(1): 247-261. |
| [29] | ZHANG J, HU Z, HOU Y, et al. Wood hydrogel for efficient moisture-electric generation[J]. ACS Applied Polymer Materials, 2024, 6(15): 8856-8865. |
| [30] | WU Q, WANG C, WANG R, et al. Salinity-gradient power generation with ionized wood membranes[J]. Advanced Energy Materials, 2020. DOI: 10.1002/aenm.201902590. |
| [31] | LIU S, YAO Y, LI X, et al. Wood ion pumps enabled by light-responsive MoS2-decorated nanocellulosic channels[J]. ACS Nano, 2024, 18(31): 20353-20362. |
| [32] | YANG C, WU Q, XIE W, et al. Copper-coordinated cellulose ion conductors for solid-state batteries[J]. Nature, 2021, 598(7882): 590-596. |
| [33] | DONG Q, ZHANG X, QIAN J, et al. A cellulose-derived supramolecule for fast ion transport[J]. Science Advances, 2022. DOI: 10.1126/sciadv.add2031. |
| [34] | ISOGAI A, ZHOU Y. Diverse nanocelluloses prepared from TEMPO-oxidized wood cellulose fibers: nanonetworks, nanofibers, and nanocrystals[J]. Current Opinion in Solid State and Materials Science, 2019, 23(2): 101-106. |
| [35] | LEE J C, LEE J A, LIM D, et al. Fabrication of cellulose nanofiber reinforced thermoplastic compo-sites[J]. Fibers and Polymers, 2018, 19(8): 1753-1759. |
| [36] | LI B, SUN K, XU W, et al. Tailoring interlayer spacing in MXene cathodes to boost the desalination performance of hybrid capacitive deionization systems[J]. Nano Research, 2023, 16(5): 6039-6047. |
| [37] | LIANG C, QIU H, SONG P, et al. Ultra-light MXene aerogel/wood-derived porous carbon composites with wall-like ″mortar/brick″ structures for electromagnetic interference shielding[J]. Science Bulletin, 2020, 65(8): 616-622. |
| [38] | JIA X, ZHANG M, ZHANG Y, et al. Enhanced selective ion transport in highly charged bacterial cellulose/boron nitride composite membranes for thermo-osmotic energy harvesting[J]. Nano Letters, 2024, 24(7): 2218-2225. |
| [39] |
LI W, ZHOU T, ZHANG Z, et al. Ultrastrong MXene film induced by sequential bridging with liquid metal[J]. Science, 2024, 385(6704): 62-68.
doi: 10.1126/science.ado4257 pmid: 38963844 |
| [40] | WU Z, JI P, WANG B, et al. Oppositely charged aligned bacterial cellulose biofilm with nanofluidic channels for osmotic energy harves-ting[J]. Nano Energy, 2021. DOI: 10.1016/j.nanoen.2020.105554. |
| [41] | YUAN Z, ZHOU B, YUAN K, et al. High-aligned oppositely-charged nanocellulose/MXene aerogel membranes through synergy of directional freeze-casting and structural densification for osmotic-energy harves-ting[J]. Nano Energy, 2024. DOI: 10.1016/j.nanoen.2024.109450. |
| [42] | LIN Z, FU X, YANG T, et al. Customizable twisted nanofluidic cellulose fibers by asymmetric microfluidics for self-powered urine monitoring[J]. Advanced Functional Materials, 2025. DOI: 10.1002/adfm.202414365. |
| [43] | CAI J, ZHANG L, ZHOU J, et al. Novel fibers prepared from cellulose in NaOH/urea aqueous solution[J]. Macromolecular Rapid Communications, 2004, 25(17): 1558-1562. |
| [44] | TU H, ZHU M, DUAN B, et al. Recent progress in high-strength and robust regenerated cellulose materials[J]. Advanced Materials, 2021. DOI: 10.1002/adma.202000682. |
| [45] | VÁZQUEZ M, DE L, BENAVENTE J. Transport and elastic parameters for dense regenerated cellulose membranes[J]. Desalination, 2009, 245(1): 579-586. |
| [46] | HUANG H, DU Z, HUANG X, et al. Development of enhanced multiwalled carbon nanotube (MWCNT) conductive polymeric nanocomposites by using acidified derivative of MWCNT as dispersant[J]. Journal of Applied Physics, 2020. DOI: 10.1063/1.5130651. |
| [47] | ZHOU B, ZOU J, LIN Z, et al. Aligned regenerated cellulose-based nanofluidic fibers with ultrahigh ionic conductivity and underwater stability for osmotic energy harvesting[J]. Chemical Engineering Journal, 2023. DOI: 10.1016/j.cej.2022.141167. |
| [48] | ZHOU B, LIN Z, XIE Z, et al. Scalable fabrication of regenerated cellulose nanohybrid membranes integrating opposite charges and aligned nanochannels for continuous osmotic energy harvesting[J]. Nano Energy, 2023. DOI: 10.1016/j.nanoen.2023.108693. |
| [49] | XIE Z, XIANG Z, FU X, et al. Decoupled ionic and electronic pathways for enhanced osmotic energy harvesting[J]. ACS Energy Letters, 2024, 9(5): 2092-2100. |
| [1] | YU Houyong, HUANG Chengling, CHEN Yi, GAO Zhiying. Review on multidimensional structural evolution of natural cellulose and its functional materials [J]. Journal of Textile Research, 2025, 46(06): 45-55. |
| [2] | WANG Chunxiang, LI Jiao, XIE Kaifang, XUE Hongkun, XU Guangbiao. Preparation and properties of gastrodia elata polysaccharide/polyvinyl alcohol antibacterial food-wrap membrane by electrospinning [J]. Journal of Textile Research, 2025, 46(06): 73-79. |
| [3] | QIU Yue, YANG Xun, LI Hao, LI Haidong, WU Guozhong, ZHANG Caidan. Modification of polysuccinimide nano fibrous membrane and its dye adsorption properties [J]. Journal of Textile Research, 2025, 46(06): 88-95. |
| [4] | SUN Jie, GUO Yuqing, QU Yun, ZHANG Liping. Preparation and performance of aramid nanofibers/MXene coaxial fiber electrodes [J]. Journal of Textile Research, 2025, 46(05): 125-134. |
| [5] | WANG Wei, GAO Jiannan, PEI Xiaohan, LU Xin, SUN Yinyin, WU Jianbing. Fabrication and oil-water separation efficiency of cellulose/methyltrimethoxysilane aerogel [J]. Journal of Textile Research, 2025, 46(05): 135-142. |
| [6] | SHI Xiaocong, CHEN Li, DU Xun. Preparation of alizarin-polylactic acid/collagen nanofiber membrane and its ammonia detection performance [J]. Journal of Textile Research, 2025, 46(05): 143-150. |
| [7] | GUO Yuqing, QU Yun, ZHANG Liping, SUN Jie. Preparation and spinnability of aramid nanofibers [J]. Journal of Textile Research, 2025, 46(04): 1-10. |
| [8] | LI Yihong, CAI Junyi, ZHUGE Xiaojie, WU Dongrui, TENG Deying, YU Jianyong, DING Bin, LI Zhaoling. Carboxylated nanocellulose-reinforced flexible transparent conductive elastomer [J]. Journal of Textile Research, 2025, 46(04): 11-19. |
| [9] | FU Fen, WANG Yuhan, DING Kai, ZHAO Fan, LI Chaojing, WANG Lu, ZENG Yongchun, WANG Fujun. Research progress in cellulose-based hemostatic materials [J]. Journal of Textile Research, 2025, 46(04): 226-234. |
| [10] | CAO Zhanrui, JI Cancan, HE Shanshan, ZHOU Feng, XIANG Yang, GAO Fei, LIU Ke, WANG Dong. Preparation and bovine serum albumin separation of ethylene vinyl alcohol copolymer nanofibrous anion-exchange aerogel [J]. Journal of Textile Research, 2025, 46(04): 29-37. |
| [11] | LI Yi, ZHANG Hengyu, GUO Wenzhuo, CHEN Jianying, WANG Ni, XIAO Hong. Preparation of cellulose/Ti3C2Tx aerogel absorbing materials with impedance step gradient layer structure and their absorption properties [J]. Journal of Textile Research, 2025, 46(03): 17-26. |
| [12] | LU Ning, CHEN Biling, SONG Gongji, LUO Yixin, WANG Jiannan, XU Jianmei. Application and research progress of nanofibres in artificial nerve conduits [J]. Journal of Textile Research, 2025, 46(03): 236-244. |
| [13] | ZHANG Fan, CHENG Chunzu, GUO Cuibin, ZHANG Dong, CHENG Min, LI Ting, XU Jigang. Optimization and performance analysis of Lyocell fiber direct web formation process [J]. Journal of Textile Research, 2025, 46(03): 34-40. |
| [14] | ZHAN Kejing, YANG Xin, ZHANG Yinglong, ZHANG Xin, PAN Zhijuan. Fabrication and mechanical reinforcement of self-coagulated regenerated silk fibroin micro-nanofiber membranes [J]. Journal of Textile Research, 2025, 46(02): 10-19. |
| [15] | ZHAO Deng, ZHANG Yi, ZHENG Mengjie, BI Shuguang, RAN Jianhua. Vision-near-infrared light stealth nylon fabric based on liquid phase stripping graphene [J]. Journal of Textile Research, 2025, 46(02): 153-160. |
|
||