Journal of Textile Research ›› 2025, Vol. 46 ›› Issue (11): 77-85.doi: 10.13475/j.fzxb.20250101901

• Textile Engineering • Previous Articles     Next Articles

Wearing performance of polyamide filament/cotton woven fabrics made from core spun-wrapped composite yarn

YIN Wenbo, YE Fan, YANG Ruihua()   

  1. College of Textile Science and Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Received:2025-01-08 Revised:2025-08-26 Online:2025-11-15 Published:2025-11-15
  • Contact: YANG Ruihua E-mail:yangrh@jiangnan.edu.cn

Abstract:

Objective Cotton fabrics used in workwear and outdoor clothing often tear or wear out due to low inherent strength and poor abrasion resistance of the cotton fiber. In order to address this limitation, a three-layer composite yarn comprising a polyamide-filament core, a cotton sheath, and an outer polyamide wrap was developed. This yarn was spun using a modified ring frame. Then influences of filament tenacity and fabric weave (plain vs. twill) on the mechanical properties and comfort performance of the resulting cotton (50%)textiles were investigated.
Method Wrap-spun polyamide 6 filaments with increasing tenacity values (41.94, 55.86, and 70.43 cN/tex) were combined with combed cotton roving (5.0 g/(10 m)) using an ring frame, producing core-wrapped yarns with a linear density of 18.3 tex. These yarns were then woven into both plain and twill fabrics. Their performance was compared to two industrial controls, i.e., a polyester/cotton core-wrapped yarn and a polyester/cotton (50/50) blend yarn, both using the same yarn linear density and thread density. Various fabric properties were evaluated, including tensile and tearing strength, Martindale abrasion resistance, pilling grade, air permeability, water vapor permeability, drape, vertical burn behavior, and tensile strength retention at -196 ℃. Overall wear performance was assessed using fuzzy comprehensive evaluation based on eight weighted indices.
Results Composite yarns made with progressively stronger polyamide 6 filaments exhibited a near-linear increase in breaking strength, reaching 652.40 cN which is 178.4% higher than that of the polyester/cotton control. These yarns also withstood 346 abrasion cycles before failure, tripling that of the benchmark. The outer polyamide wrap not only transmitted filament strength but also reduced yarn hairiness by 53%, indicating effective confinement of the cotton fibers. When yarns of identical fineness but differing structures were woven into plain fabrics with identical warp and weft densities, the warp and weft breaking strengths of the fabric (F1P) woven from core-wrapped composite yarns increased by 50.10% and 26.42%, respectively, compared to the control group. It was also found that the high-tenacity twill (F4-W) fabric resisted forces 1.6-fold (warp) and 1.4-fold (weft) greater than the control fabric, a benefit attributed to both the filament tenacity and the longer float lengths of twill that help redistribute load. Abrasion durability under friction increased as well. After 25 000 Martindale cycles, the composite yarn fabric exhibited a lower mass loss rate than the control group, regardless of whether it was plain weave or twill weave. Macroscopic inspection revealed only sparse fuzz on the composite fabrics, in contrast to the severe pilling and fiber breakage observed in the benchmark. All composite variants achieved ISO pilling grades of 4-5. Comfort properties were primarily influenced by the fabric weave rather than filament grade. The air permeability and water vapor permeability of composite yarn fabrics showed little difference compared to the control group. Twills were consistently 1.5 to 2.7 times more permeable and demonstrated greater drapability (51.6%-66.7%) than that of the plain woven fabric. Safety testing confirmed strong thermal shock resistance across all fabrics made from the composite yarns. All fabrics exhibited carbonization without molten dripping, and warp strength loss remained below 2% after four hours at -196 ℃. Finally, fuzzy comprehensive evaluation using eight weighted indices ranked the high-tenacity polyamide twill (F4-W) the highest in overall wear performance, followed by the polyamide 6 twill (F3-W)and the polyamide 6 plain weave (F3-P).These findings confirm that filament strength and weave design act as orthogonal but synergistic factors in engineering high-strength, abrasion-resistant, cotton fabrics for workwear and outdoor sportswear.
Conclusion By tightly wrapping cotton staples with high-tenacity polyamide filaments, the use of wrapping filament in yarn making suppresses fiber slippage and hairiness while effectively transferring filament strength to the fabric. As a result, warp and weft breaking strength, tearing strength, and abrasion resistance exceed those of polyester/cotton blended fabrics. Breaking strength is primarily determined by filament tenacity, while comfort characteristics are governed by the weave structure. These findings establish high-tenacity polyamide twills as scalable, high-load solutions for workwear and outdoor apparel.

Key words: core-wrapped composite yarn, woven fabric, polyamide 6 filament yarn, wearability, high-strength wear-resistant fabric, ring spinning, fuzzy comprehensive evaluation

CLC Number: 

  • TS104

Tab.1

Property index of raw filament"

长丝
编号
长丝种类 线密
度/tex
断裂
强力/
cN
断裂强度/
(cN·
tex-1)
断裂
伸长
率/%
模量/
(cN·
dtex-1)
1# 涤纶长丝 4.44 132.5 29.86 24.18 43.6
2# 锦纶6长丝 4.44 186.2 41.94 45.50 29.7
3# 锦纶6长丝 4.44 248.0 55.86 18.46 19.8
4# 高强锦纶6长丝 4.44 312.7 70.43 15.48 25.1

Tab.2

Material components and parameters of yarns"

纱线编号 纱线用材料 长丝与棉粗纱占比
Y1 芯纱:1#涤纶长丝
第1包缠纱:5.0 g/(10 m)棉粗纱 50/50
第2包缠纱:1#涤纶长丝
Y2 芯纱:2#锦纶6长丝
第1包缠纱:5.0 g/(10 m)棉粗纱 50/50
第2包缠纱:2#锦纶6长丝
Y3 芯纱:3#锦纶6长丝
第1包缠纱:5.0 g/(10 m)棉粗纱 50/50
第2包缠纱:3#锦纶6长丝
Y4 芯纱:4#高强锦纶6长丝
第1包缠纱:5.0 g/(10 m)棉粗纱 50/50
第2包缠纱:4#高强锦纶6长丝
Y5 8.0 g/(10 m)涤纶/棉混纺粗纱 50/50

Fig.1

Schematic diagram of core-wrapped composite yarn spinning"

Tab.3

Basic fabric parameters"

织物
编号
经纬纱
种类
织物
组织
密度/
(根·(10 cm)-1)
面密度/
(g·m-2)
厚度/
mm
纬密 经密
F1-P 复合纱Y1 平纹 285 345 232.77 0.53
F2-P 复合纱Y2 237.72 0.56
F3-P 复合纱Y3 234.26 0.55
F4-P 复合纱Y4 238.67 0.56
F5-P 复合纱Y5 233.57 0.54
F1-W 复合纱Y1 斜纹 285 345 234.58 0.63
F2-W 复合纱Y2 230.68 0.64
F3-W 复合纱Y3 233.07 0.63
F4-W 复合纱Y4 241.01 0.65
F5-W 复合纱Y5 235.25 0.58

Fig.2

Morphologies of four kinds of core-wrapped composite yarns and polyester/cotton blended yarns"

Tab.4

Yarn property test results"

编号 线密
度/tex
断裂强
力/cN
断裂伸
长率/%
条干
不匀率/
%
>3 mm毛羽
数/(根·m-1)
耐磨
次数
Y1 18.3 337.10 16.65 10.38 36 189
Y2 18.3 412.50 42.87 10.67 37 238
Y3 18.3 541.23 25.07 10.80 29 287
Y4 18.3 652.40 20.34 10.86 34 346
Y5 18.3 234.30 8.12 11.02 72 112

Tab.5

Test results of fabric's main wearing properties"

织物
编号
断裂强力/N 撕破强力/N 质量
损失率/%
抗起毛
起球等级
透气率/
(mm·s-1)
透湿率/
(g·m-2·d-1)
静态悬
垂系数
纬向 经向 纬向 经向
F1-P 905.7 1 436.0 99.4 160.1 11.85 4.5 133.5 3 976.8 61.29
F2-P 1 142.1 1 743.3 120.0 172.2 9.55 4.5 123.6 3 801.6 61.47
F3-P 1 415.5 2 087.7 125.0 197.1 9.30 5 125.2 4 112.8 62.40
F4-P 1 508.0 2 198.2 131.6 210.2 9.02 5 120.1 3 709.6 64.10
F5-P 716.4 956.7 54.8 79.3 12.58 3 117.8 4 173.3 66.71
F1-W 759.5 1 307.3 107.4 173.8 12.30 4 333.3 4 290.4 55.11
F2-W 1 024.7 1 619.2 121.0 205.1 11.32 4 328.4 3 928.8 51.62
F3-W 1 226.8 1 808.2 132.9 220.8 10.34 4.5 318.2 4 156.8 57.89
F4-W 1377.8 2 074.8 143.7 229.3 10.03 5 316.8 4 324.8 58.97
F5-W 676.1 894.5 58.8 86.7 13.45 3 322.8 4 373.6 60.57

Tab.6

Mechanical properties of fabrics after freezing treatment"

织物
编号
织物
状态
断裂强力/N 撕破强力/N 冷冻前后
强力比
纬向 经向 纬向 经向
F1-P 普通状态 905.7 1 436.0 99.4 160.1 0.996
冷冻状态 894.6 1 442.1 97.6 157.4
F2-P 普通状态 1 142.1 1 743.3 120.0 172.2 0.989
冷冻状态 1 126.8 1 728.0 117.5 169.4
F3-P 普通状态 1 415.5 2 087.7 125.0 197.1 0.987
冷冻状态 1 396.6 2 064.6 123.0 190.4
F4-P 普通状态 1 508.0 2 198.2 131.6 210.2 0.987
冷冻状态 1 486.6 2 177.7 127.5 2 02.1
F5-P 普通状态 716.4 956.7 54.8 79.3 0.991
冷冻状态 704.0 956.3 55.2 74.9
F1-W 普通状态 759.5 1 307.3 107.4 173.8 0.982
冷冻状态 744.6 1 288.9 103.5 168.6
F2-W 普通状态 1 024.7 1 619.2 121.0 205.1 0.993
冷冻状态 1 007.7 1 620.8 117.4 203.3
F3-W 普通状态 1 226.8 1 808.2 132.9 220.8 0.985
冷冻状态 1 202.4 1 788.9 128.6 218.8
F4-W 普通状态 1 377.8 2 074.8 143.7 229.3 0.992
冷冻状态 1 367.8 2 065.4 137.6 224.6
F5-W 普通状态 676.1 894.5 58.8 86.7 0.979
冷冻状态 663.2 878.7 54.5 83.8

Fig.3

Mass loss rates of fabrics under different flat grinding times"

Fig.4

Appearance comparison of plain (a) and twill (b) fabrics before and after 25 000 flat grinding cycles"

Tab.7

Test results of fabric vertical burning"

织物
编号
损毁
长度/cm
续燃
时间/s
阴燃
时间/s
有无
熔滴
燃烧后
特征
F1-P 30 25.4 4.6 炭化
F2-P 30 27.8 5.2 炭化
F3-P 30 26.6 5.8 炭化
F4-P 30 25.8 4.6 炭化
F5-P 30 25.4 5.4 炭化
F1-W 30 22.4 4.5 炭化
F2-W 30 23.8 4.1 炭化
F3-W 30 21.2 5.9 炭化
F4-W 30 22.1 4.5 炭化
F5-W 30 23.5 5.3 炭化
[1] 王波, 蒋志青, 鲍军方, 等. 棉纤维产地溯源技术及研究进展[J]. 纺织学报, 2024, 45(11): 244-250.
doi: 10.13475/j.fzxb.20231103002
WANG Bo, JIANG Zhiqing, BAO Junfang, et al. Research progress in geographic origin traceability technology for cotton fibers[J]. Journal of Textile Research, 2024, 45(11): 244-250.
doi: 10.13475/j.fzxb.20231103002
[2] 杨骞, 章友鹤, 张毅. 浙江纺纱产业结构调整与产品升级的几点探索[J]. 浙江纺织服装职业技术学院学报, 2024, 23(2): 5-11, 19.
YANG Qian, ZHANG Youhe, ZHANG Yi. Several explorations on the structural adjustment and product upgrade of Zhejiang's spinning industry[J]. Journal of Zhejiang Fashion Institute of Technology, 2024, 23(2): 5-11, 19.
[3] 吴佳庆, 王怡婷, 何欣欣, 等. 混纺比对生物基锦纶56短纤/棉混纺纱力学性能的影响[J]. 纺织学报, 2023, 44(3): 49-54.
WU Jiaqing, WANG Yiting, HE Xinxin, et al. Influence of blending ratio on mechanical properties of bio-polyamide 56 staple fiber/cotton blended yarn[J]. Journal of Textile Research, 2023, 44(3): 49-54.
[4] 魏艳红, 刘新金, 谢春萍, 等. 聚酯长丝/棉复合纱斜纹织物的保形性及服用性能[J]. 纺织学报, 2019, 40(12): 39-44.
doi: 10.13475/j.fzxb.20190204306
WEI Yanhong, LIU Xinjin, XIE Chunping, et al. Shape retention and wearing properties of polyester filament/cotton composite yarn twill fabrics[J]. Journal of Textile Research, 2019, 40(12): 39-44.
doi: 10.13475/j.fzxb.20190204306
[5] 宋婉萌, 王宝弘, 孙宇, 等. 兼具力学性能与高效阻燃性能粘胶织物的制备及其性能[J]. 纺织学报, 2025, 46(2): 188-196.
SONG Wanmeng, WANG Baohong, SUN Yu, et al. Preparation and performance of flame-retardant viscose fabrics with both mechanical and efficient flame-retardant properties[J]. Journal of Textile Research, 2025, 46(2): 188-196.
[6] 王太冉, 张琦, 陈超余, 等. 毛圈高度对经编毛巾织物服用性能的影响[J]. 上海纺织科技, 2023, 51(11): 6-8, 54.
WANG Tairan, ZHANG Qi, CHEN Chaoyu, et al. Effect of loops height on the wearability of warp knitted terry fabric[J]. Shanghai Textile Science & Technology, 2023, 51(11): 6-8, 54.
[7] 孙秀玲. 基于面状摩擦的织物耐磨性能测试与评价方法改进[D]. 无锡: 江南大学, 2023:34.
SUN Xiuling. Improvement of testing and evaluating method of fabric wear resistance based on surface friction[D]. Wuxi: Jiangnan University, 2023:34.
[8] 秦路路, 秦志刚. 黏胶/合纤混纺针织物的抗起毛起球性能研究[J]. 国际纺织导报, 2020, 48(6): 18-20, 22.
QIN Lulu, QIN Zhigang. Anti-pilling performance of viscose/synthetic fiber blended knitted fabrics[J]. Melliand China, 2020, 48(6): 18-20, 22.
[9] 钱娟, 谢婷, 张佩华, 等. 聚乙烯针织物的热湿舒适性能[J]. 纺织学报, 2022, 43(7): 60-66.
QIAN Juan, XIE Ting, ZHANG Peihua, et al. Thermal and moisture comfort performance of polyethylene knitted fabric[J]. Journal of Textile Research, 2022, 43(7): 60-66.
doi: 10.1177/004051757304300111
[10] 苏旭中, 梁巧敏, 王汇锋, 等. 棉/生物基弹性聚酯纤维混纺针织物的服用性能[J]. 纺织学报, 2023, 44(5): 119-124.
SU Xuzhong, LIANG Qiaomin, WANG Huifeng, et al. Wearability of knitted fabrics produced from cotton/bio-based elastic polyester fiber[J]. Journal of Textile Research, 2023, 44(5): 119-124.
[11] 郑国华. 中国古代美学思想对服装设计的启示[J]. 轻纺工业与技术, 2024, 53(2): 129-132.
ZHENG Guohua. Enlightenment of China's ancient aesthetic thought on fashion design[J]. Light and Textile Industry and Technology, 2024, 53(2): 129-132.
[12] 苏德清, 程建生, 魏廷三, 等. 基于ANP-FUZZY法的绿色办公楼工程项目管理综合评价[J]. 中国建筑金属结构, 2024(1): 176-179, 183.
SU Deqing, CHENG Jiansheng, WEI Tingsan, et al. Comprehensive evaluation of green office building project management based on ANP-FUZZY method[J]. China Construction Metal Structure, 2024(1): 176-179, 183.
[1] LI Xintian, ZHOU Xuan, WANG Zhanhuan, DU Zhonghua, XU Lizhi. Influence of layer number and layup mode on anti-penetration performance of multi-layer aramid plain woven fabric [J]. Journal of Textile Research, 2025, 46(11): 126-136.
[2] GUO Mengyao, WU Jiaqing, WANG Ying. Fabrication of fully covered polyurethane-film-strip/cotton composite yarns and its mechanical properties [J]. Journal of Textile Research, 2025, 46(11): 69-76.
[3] ZHANG Ziyue, JIANG Hongxia, LIU Jihong. Design and evaluation of digital texture color cards for monochromatic woven fabrics [J]. Journal of Textile Research, 2025, 46(10): 167-175.
[4] QIU Jun, LI Jijun. 3-D realistic modeling and parametric design of woven fabrics [J]. Journal of Textile Research, 2025, 46(10): 95-102.
[5] LIANG Rui, LI Zhong, TONG Weihong, YE Changhuai. Polyethylene-derived carbon fiber fabrics for electromagnetic interference shielding [J]. Journal of Textile Research, 2025, 46(09): 27-35.
[6] JIA Yanjun, GAO Lu, ZHAO Yingying, JING Zhaojing, GUO Ziyang, WANG Haitao, CHANG Na. Influences of nonwoven fabric structure and surface properties on performance of polysulfone support layer and separation layer of reverse osmosis membranes [J]. Journal of Textile Research, 2025, 46(09): 171-180.
[7] ZHANG Xinyu, JIN Xiaopei, ZHU Jintang, CUI Huashuai, WU Pengfei, CUI Ning, SHI Xianning. Improvement of thermal dimensional stability properties of polylactic acid meltblown nonwovens [J]. Journal of Textile Research, 2025, 46(08): 127-135.
[8] ZHANG Aidan, WANG Qian. Color prediction method of triple-weft fabric with full-color compound structure [J]. Journal of Textile Research, 2025, 46(05): 151-158.
[9] SHANG Jingyu, JIANG Gaoming, CHEN Yushan, LIU Haisang, LI Bingxian. Design and 3-D simulation of jacquard leno fabrics [J]. Journal of Textile Research, 2025, 46(04): 81-88.
[10] WANG Zhefeng, CAI Wangdan, LI Shiya, XU Qingyi, ZHANG Hongxia, ZHU Chengyan, JIN Xiaoke. Wearability of woven fabrics with antibacterial and odorizing composite functions [J]. Journal of Textile Research, 2025, 46(03): 90-99.
[11] ZHANG Rui, YE Suxian, WANG Jian, ZOU Zhuanyong. Preparation and performance of all-fabric iontronic flexible pressure sensor [J]. Journal of Textile Research, 2025, 46(02): 113-121.
[12] LI Huimin, LIU Shuqiang, DU Linlin, ZHANG Man, WU Gaihong. Parametric modeling of basalt/polyimide three-dimensional spacer woven fabric and numerical simulation of heat transfer in high temperature environment [J]. Journal of Textile Research, 2025, 46(01): 87-94.
[13] SUN Jian, WANG Tong, CHEN Yunhui, LIN He, LIU Hui, CHENG Xiaole. Constitutive model and application of fabric reinforced rubber composites [J]. Journal of Textile Research, 2025, 46(01): 95-102.
[14] XIAO Xin, LI Wei, LU Run, JIANG Huiyu, LI Qing. Scouring and bleaching of cotton nonwoven fabrics using plasma-assisted hydrogen peroxide activation system [J]. Journal of Textile Research, 2024, 45(12): 118-127.
[15] LI Han, WANG Haixia, ZHANG Xu, LIU Liping, LIU Xiaokun. Preparation and thermal management performance of thermoregulated fabric based on polyvinyl butyral/polyethylene glycol coaxial nanofiber membrane [J]. Journal of Textile Research, 2024, 45(11): 37-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!