Journal of Textile Research ›› 2025, Vol. 46 ›› Issue (09): 27-35.doi: 10.13475/j.fzxb.20250206201
• Academic Salon Column for New Insight of Textiles Science and Technology: Camouflage and Electromagnetic Shielding Technologies and Applications • Previous Articles Next Articles
LIANG Rui1,2, LI Zhong3, TONG Weihong3, YE Changhuai1,2(
)
CLC Number:
| [1] |
ZERAATI A S, MIRKHANI S A, SHARIF F, et al. Electrochemically exfoliated graphite nanosheet films for electromagnetic interference shields[J]. ACS Applied Nano Materials, 2021, 4(7): 7221-7233.
doi: 10.1021/acsanm.1c01172 |
| [2] | 刘顺华, 刘军民, 董星龙, 等. 电磁波屏蔽与吸波材料[M]. 2版. 北京: 化学工业出版社, 2013: 49-182. |
| LIU Shunhua, LIU Junmin, DONG Xinglong, et al. Electromagnetic wave shielding and absorbing materials[M]. 2nd ed. Beijing: Chemical Industry Press, 2013: 49-182. | |
| [3] | 余子锐, 周丹锋, 袁欢, 等. 聚合物基电磁屏蔽复合材料的异质结构构建策略研究进展[J]. 复合材料学报, 2024, 10(31): 1-14. |
| YU Zirui, ZHOU Danfeng, YUAN Huan, et al. Research progress on heterogeneous structure construction strategies of polymer-based electromagnetic shielding composites[J]. Acta Materiae Compositae Sinica, 2024, 10(31): 1-14. | |
| [4] |
ZHENG Shufang, WANG Yuyin, WANG Xuesheng, et al. Research progress on high-performance electromagnetic interference shielding materials with well-organized multilayered structures[J]. Materials Today Physics, 2024, 40: 101330.
doi: 10.1016/j.mtphys.2024.101330 |
| [5] |
SONG Qiang, YE Fang, YIN Xiaowei, et al. Carbon nanotube-multilayered graphene edge plane core-shell hybrid foams for ultrahigh-performance electro-magnetic-interference shielding[J]. Advanced Materials, 2017, 29(31): 1701583.
doi: 10.1002/adma.v29.31 |
| [6] |
FU Huili, YANG Zhengpeng, ZHANG Yongyi, et al. SWCNT-modulated folding-resistant sandwich-structured graphene film for high-performance electromagnetic interference shielding[J]. Carbon, 2020, 162: 490-496.
doi: 10.1016/j.carbon.2020.02.081 |
| [7] |
王喜花, 黄丽, 张彦超, 等. 轻质碳基电磁屏蔽与吸波材料研究进展[J]. 化工新型材料, 2023, 51(11): 251-256, 262.
doi: 10.19817/j.cnki.issn1006-3536.2023.11.008 |
|
WANG Xihua, HUANG Li, ZHANG Yanchao, et al. Research progress on lightweight carbon-based electromagnetic shielding and absorbing materials[J]. New Chemical Materials, 2023, 51(11): 251-256, 262.
doi: 10.19817/j.cnki.issn1006-3536.2023.11.008 |
|
| [8] |
NAEEM S, BSHETI V, TUNAKOVA V, et al. Development of porous and electrically conductive activated carbon web for effective EMI shielding applications[J]. Carbon, 2017, 111: 439-447.
doi: 10.1016/j.carbon.2016.10.026 |
| [9] | LI Songtao, LIU Dongyan, LI Wangchong, et al. Strong and heat-resistant SiC-coated carbonized natural loofah sponge for electromagnetic interference shielding[J]. ACS Sustainable Chemistry & Engineering, 2019, 8(1): 435-444. |
| [10] | RAGOSNIG A M, AGAMUTHU P. Plastic waste: challenges and opportunities[J]. Waste Management & Research, 2021, 39(5): 629-630. |
| [11] |
SHAPIRO A J, BRIGANDI P J, MOUBARAK M, et al. Cross-linked polyolefins: opportunities for fostering circularity throughout the materials lifecycle[J]. ACS Applied Polymer Materials, 2024, 6(19): 11859-11876.
doi: 10.1021/acsapm.4c01959 pmid: 39416717 |
| [12] | 黄芸珂, 汪艳. 形状记忆交联聚乙烯的制备及其光热、磁响应性能[J]. 高分子通报, 2024, 37(12): 1814-1820. |
| HUANG Yunke, WANG Yan. Preparation of shape memory cross-linked polyethylene and its photothermal and magnetic response properties[J]. Polymer Bulletin, 2024, 37(12): 1814-1820. | |
| [13] |
RAFIEI-SARMAZDEH Z, TORAB-MOSTAEDI M, ASDOLLAHZADEH M, et al. Foaming behavior of radiation-crosslinked virgin and recycled low-density polyethylene[J]. Journal of Polymers and the Environment, 2025, 33: 2149-2160.
doi: 10.1007/s10924-025-03509-4 |
| [14] |
KHERADMANDKEYSOMI M, SALEHI A, JALALI A, et al. Achieving super-tough high-density polyethylene with promising foamability using silane crosslinked polyolefin elastomer nanofibrils network[J]. Composites Science and Technology, 2024, 251: 110576.
doi: 10.1016/j.compscitech.2024.110576 |
| [15] | LI Chengpeng, ZHU Haijin, SALIM N V, et al. Preparation of microporous carbon materials via in-depth sulfonation and stabilization of polyethylene[J]. Carbon, 2016, 134: 272-283. |
| [16] |
ROBERTSON M, OBANDO A G, EMERY J, et al. Multifunctional carbon fibers from chemical upcycling of mask waste[J]. ACS Omega, 2022, 7(14): 12278-12287.
doi: 10.1021/acsomega.2c00711 pmid: 35449951 |
| [17] |
SMITH P, BOUNDS E, JONES K, et al. Enabling 3D printing of carbons by polyethylene precursors[J]. MRS Communications, 2024, 14: 717-724.
doi: 10.1557/s43579-024-00619-3 |
| [18] |
LIM H, SHIN M, KWON Y. Vanadium redox flow batteries including carbon catalysts derived from low-density polyethylene and polyurethane[J]. Korean Journal of Chemical Engineering, 2023, 40: 3087-3095.
doi: 10.1007/s11814-023-1576-y |
| [19] |
GRIFFIN A, WU Jiachun, SMERIGAN A, et al. Upcycling of mixed polyolefin wastes to 3D structured carbon Joule heaters for decarbonized hydrogen production[J]. Materials Horizons, 2025, 12: 3827-3840.
doi: 10.1039/D4MH01755B |
| [20] |
JIANG Dawei, MURUGADOSS V, WANG Ying, et al. Electromagnetic interference shielding polymers and nanocomposites: a review[J]. Polymer Reviews, 2019, 59(2): 280-337.
doi: 10.1080/15583724.2018.1546737 |
| [21] | PALMENAER A D, WORTBERG G, DRISSEN F, et al. Production of polyethylene based carbon fibers[J]. Chemical Engineering Transactions, 2015, 43: 1699-1704. |
| [22] |
BARTON B, PATTON J, HUKKANEN E, et al. The chemical transformation of hydrocarbons to carbon using SO3 sources[J]. Carbon, 2015, 94: 465-471.
doi: 10.1016/j.carbon.2015.07.029 |
| [23] |
YOUNKER J M, SAITO T, HUNT M A, et al. Pyrolysis pathways of sulfonated polyethylene, an alternative carbon fiber precursor[J]. Journal of the American Chemical Society, 2013, 135(16): 6130-6141.
doi: 10.1021/ja3121845 pmid: 23560686 |
| [24] |
SMITH P, GUILLEN O A, GRFFIN A, et al. Sulfonation-induced structural evolution of polyethylene fibers for enhanced carbonization performance[J]. Advanced Materials, 2023, 35(31): 2208029.
doi: 10.1002/adma.v35.17 |
| [25] | 石彦平. 拉曼光谱研究碳纤维的微观结构和性能[D]. 上海: 东华大学, 2011: 21-24. |
| SHI Yanping. Studies on the microstructure and properties of carbon fibers by Raman spectroscopy[D]. Shanghai: Donghua University, 2011: 21-24. | |
| [26] | 贺福. 碳纤维及石墨纤维[M]. 北京: 化学工业出版社, 2010: 376-380. |
| HE Fu. Carbon fibers and graphite fibers[M]. Beijing: Chemical Industry Press, 2010: 376-380. | |
| [27] |
OKUDA H, YOUNG R J, WOLVERSON D, et al. Investigating nanostructures in carbon fibres using Raman spectroscopy[J]. Carbon, 2018, 130: 178-184.
doi: 10.1016/j.carbon.2017.12.108 |
| [28] | GONG Yutong, WANG Haiyan, WEI Zhongzhe, et al. An efficient way to introduce hierarchical structure into biomass-based hydrothermal carbonaceous materials[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(10): 2435-2441. |
| [29] |
YANG Pingjun, LI Tiehu, LI Hao, et al. Microstructure, electrical conductivity and mechanical properties of graphitization carbon foam derived from epoxy resin modified with coal tar pitch[J]. Carbon Letters, 2024, 34: 1065-1073.
doi: 10.1007/s42823-023-00642-9 |
| [30] |
TAO Yubo, LI Peng, SHI Qiang. Effects of carbonization temperature and component ratio on electromagnetic interference shielding effectiveness of wood ceramics[J]. Materials, 2016, 9(7): 540.
doi: 10.3390/ma9070540 |
| [31] | WANG Yue, PENG Suping, ZHU Shu, et al. Biomass-derived, highly conductive aqueous inks for superior electromagnetic interference shielding, joule heating, and strain sensing[J]. ACS Applied Materials & Interfaces, 2021, 13(48): 57930-57942. |
| [32] |
HAN Meikang, YIN Xiaowei, HANTANASIRISAKUL K, et al. Anisotropic MXene aerogels with a mechanically tunable ratio of electromagnetic wave reflection to absorption[J]. Advanced Optical Materials, 2019, 7(10): 1900267.
doi: 10.1002/adom.v7.10 |
| [33] |
HU Qingmei, YANG Rongliang, MO Zichao, et al. Nitrogen-doped and Fe-filled CNTs/NiCo2O4 porous sponge with tunable microwave absorption perform-ance[J]. Carbon, 2019, 153: 737-744.
doi: 10.1016/j.carbon.2019.07.077 |
| [34] | 贺鑫惠, 毕思伊, 李宏杰, 等. 梯度结构碳纤维毡复合材料的制备及电磁屏蔽性能[J/OL]. 复合材料学报, 2024,43: 1-9. |
| HE Xinhui, BI Siyi, LI Hongjie, et al. Preparation and electromagnetic shielding performance of multi-layer carbon fiber mat composites[J/OL]. Acta Materiae Compositae Sinica, 2024,43: 1-9. |
| [1] | JIA Yanjun, GAO Lu, ZHAO Yingying, JING Zhaojing, GUO Ziyang, WANG Haitao, CHANG Na. Influences of nonwoven fabric structure and surface properties on performance of polysulfone support layer and separation layer of reverse osmosis membranes [J]. Journal of Textile Research, 2025, 46(09): 171-180. |
| [2] | ZHANG Xinyu, JIN Xiaopei, ZHU Jintang, CUI Huashuai, WU Pengfei, CUI Ning, SHI Xianning. Improvement of thermal dimensional stability properties of polylactic acid meltblown nonwovens [J]. Journal of Textile Research, 2025, 46(08): 127-135. |
| [3] | HONG Chuling, CONG Honglian, ZHAO Kezheng, LIU Bo, HE Haijun. Process model and realization of fully formed protective head mask [J]. Journal of Textile Research, 2025, 46(06): 111-119. |
| [4] | ZHANG Aidan, WANG Qian. Color prediction method of triple-weft fabric with full-color compound structure [J]. Journal of Textile Research, 2025, 46(05): 151-158. |
| [5] | SHANG Jingyu, JIANG Gaoming, CHEN Yushan, LIU Haisang, LI Bingxian. Design and 3-D simulation of jacquard leno fabrics [J]. Journal of Textile Research, 2025, 46(04): 81-88. |
| [6] | WANG Zhefeng, CAI Wangdan, LI Shiya, XU Qingyi, ZHANG Hongxia, ZHU Chengyan, JIN Xiaoke. Wearability of woven fabrics with antibacterial and odorizing composite functions [J]. Journal of Textile Research, 2025, 46(03): 90-99. |
| [7] | ZHANG Rui, YE Suxian, WANG Jian, ZOU Zhuanyong. Preparation and performance of all-fabric iontronic flexible pressure sensor [J]. Journal of Textile Research, 2025, 46(02): 113-121. |
| [8] | WANG Rongrong, ZHOU Zhou, FENG Xiang, SHEN Ying, LIU Feng, XING Jian. Preparation and properties of porous sound absorption materials made from polyester/ethylene-propylene fibers [J]. Journal of Textile Research, 2025, 46(02): 61-68. |
| [9] | YE Kongmeng, QIN Zixuan, KANG Guitian, LI Sai, HAN Dexiao, ZHANG Heng. Flash spinning-hydroentangling process of high-density polyethylene microfibrous tarpaulin and its waterproof and permeable performance [J]. Journal of Textile Research, 2025, 46(01): 25-33. |
| [10] | LI Huimin, LIU Shuqiang, DU Linlin, ZHANG Man, WU Gaihong. Parametric modeling of basalt/polyimide three-dimensional spacer woven fabric and numerical simulation of heat transfer in high temperature environment [J]. Journal of Textile Research, 2025, 46(01): 87-94. |
| [11] | SUN Jian, WANG Tong, CHEN Yunhui, LIN He, LIU Hui, CHENG Xiaole. Constitutive model and application of fabric reinforced rubber composites [J]. Journal of Textile Research, 2025, 46(01): 95-102. |
| [12] | XIAO Xin, LI Wei, LU Run, JIANG Huiyu, LI Qing. Scouring and bleaching of cotton nonwoven fabrics using plasma-assisted hydrogen peroxide activation system [J]. Journal of Textile Research, 2024, 45(12): 118-127. |
| [13] | CHEN Shichang, YANG Dongdong, CHEN Wenxing. Synthesis of polyethylene glycol citrate ester smoothing agent and performance of compound formulation design for spinning oil agents [J]. Journal of Textile Research, 2024, 45(11): 128-135. |
| [14] | LIU Yanbo, GAO Xinyu, HAO Ming, HU Xiaodong, YANG Bo. Composite fiber felts based on photothermal modification and their application in high viscosity oil adsorption [J]. Journal of Textile Research, 2024, 45(11): 55-64. |
| [15] | LI Han, WANG Haixia, ZHANG Xu, LIU Liping, LIU Xiaokun. Preparation and thermal management performance of thermoregulated fabric based on polyvinyl butyral/polyethylene glycol coaxial nanofiber membrane [J]. Journal of Textile Research, 2024, 45(11): 37-45. |
|
||