Journal of Textile Research ›› 2025, Vol. 46 ›› Issue (12): 233-242.doi: 10.13475/j.fzxb.20250500602
• Comprehensive Review • Previous Articles Next Articles
SHI Zhicheng1, CHEN Fengxiang1(
), WANG Mengyun2, BAI Jie2, LI Juan2, BAI Meng2, FU Guangwei2, XU Weilin1
CLC Number:
| [1] |
CHA J H, KUMAR S K S, JANG W H, et al. Multidisciplinary space shield origami composite: incorporating cosmic radiation shielding, space debris impact protection, solar radiative heat shielding, and atomic oxygen erosion resistance[J]. Composites Part B: Engineering, 2025, 288: 111876.
doi: 10.1016/j.compositesb.2024.111876 |
| [2] |
BUCHANAN M. It's time to tackle space debris[J]. Nature Physics, 2024, 20(5): 680.
doi: 10.1038/s41567-024-02501-4 |
| [3] |
NISHIDA M, KIMURA D, ASHIDA K, et al. Effects of electron beam and atomic oxygen irradiation on hypervelocity - Impact tested/polyimide coated carbon fiber-reinforced plates[J]. Composites Part B: Engineering, 2025, 288: 111877.
doi: 10.1016/j.compositesb.2024.111877 |
| [4] |
ZHANG Y, LUO Y X, WANG M Q, et al. Advances in colored carbon-based fiber materials and their emerging applications[J]. SusMat, 2024, 4(6): e243.
doi: 10.1002/sus2.v4.6 |
| [5] | WANG Y M, QIN W W, CHEN Z, et al. Fine-grain high-performance densified oxide fibers produced by open ultrafast high-temperature sintering[J]. Advanced Materials, 2024, 36(48): e2412139. |
| [6] |
INCE J C, PEERZADA M, MATHEWS L D, et al. Overview of emerging hybrid and composite materials for space applications[J]. Advanced Composites and Hybrid Materials, 2023, 6(4): 130.
doi: 10.1007/s42114-023-00678-5 |
| [7] |
GAO S, MA T H, ZHOU N N, et al. Extremely compact and lightweight triboelectric nanogenerator for spacecraft flywheel system health monitoring[J]. Nano Energy, 2024, 122: 109330.
doi: 10.1016/j.nanoen.2024.109330 |
| [8] |
SUN Z L, LUO Y X, CHEN C Y, et al. Mechanical enhancement of carbon fiber-reinforced polymers: from interfacial regulating strategies to advanced processing technologies[J]. Progress in Materials Science, 2024, 142: 101221.
doi: 10.1016/j.pmatsci.2023.101221 |
| [9] |
WANG F, ZHAO S M, JIANG Q Y, et al. Advanced functional carbon nanotube fibers from preparation to application[J]. Cell Reports Physical Science, 2022, 3(8): 100989.
doi: 10.1016/j.xcrp.2022.100989 |
| [10] | 蹇木强, 张莹莹, 刘忠范. 石墨烯纤维:制备、性能与应用[J]. 物理化学学报, 2022, 38(2): 22-39. |
| JIAN Muqiang, ZHANG Yingying, LIU Zhongfan. Graphene fibers: preparation, properties and applications[J]. Acta Physico-Chimica Sinica, 2022, 38(2): 22-39. | |
| [11] | 李久刚, 石玉菲, 刘可帅, 等. 石英纱线/石英纤维毡三维织物的设计及其隔热性能[J]. 纺织学报, 2024, 45(6): 53-58. |
| LI Jiugang, SHI Yufei, Liu Keshuai, et al. The design of three-dimensional fabrics made of quartz yarns/quartz fiber felts and their thermal insulation properties[J]. Journal of Textile Research, 2024, 45(6): 53-58. | |
| [12] |
LIU Z X, ZHAO W K, YU G C, et al. Fabrication and mechanical behaviors of quartz fiber composite honeycomb with extremely low permittivity[J]. Composite Structures, 2021, 271: 114129.
doi: 10.1016/j.compstruct.2021.114129 |
| [13] | XU Z, LIU H L, WU F, et al. Inhibited grain growth through phase transition modulation enables excellent mechanical properties in oxide ceramic nanofibers up to 1700 ℃[J]. Advanced Materials, 2023, 35(44): e2305336. |
| [14] | LIU C, LIAO Y L, JIAO W L, et al. High toughness combined with high strength in oxide ceramic nano-fibers[J]. Advanced Materials, 2023, 35(32): e2304401. |
| [15] |
郭伟娜, 辛三法, 胡文锋, 等. 碳化硅纤维预制体编织损伤特性研究[J]. 纺织学报, 2022, 43(12): 69-74.
doi: 10.13475/j.fzxb.20210904006 |
|
GUO Weina, XIN Sanfa, HU Wenfeng, et al. Research on the damage characteristics of silicon carbide fiber preforms during spinning[J]. Journal of Textile Research, 2022, 43(12): 69-74.
doi: 10.13475/j.fzxb.20210904006 |
|
| [16] |
RUDDY F H, OTTAVIANI L, LYOUSSI A, et al. Silicon carbide neutron detectors for harsh nuclear environments: a review of the state of the art[J]. IEEE Transactions on Nuclear Science, 2022, 69(4): 792-803.
doi: 10.1109/TNS.2022.3144125 |
| [17] | MAITA J M, SONG G, COLBY M, et al. Atomic arrangement and mechanical properties of chemical-vapor-deposited amorphous boron[J]. Materials & Design, 2020, 193: 108856. |
| [18] |
WU C Z, WANG B, WU N, et al. Molecular-scale understanding on the structure evolution from melamine diborate supramolecule to boron nitride fibers[J]. Ceramics International, 2020, 46(1): 1083-1090.
doi: 10.1016/j.ceramint.2019.09.075 |
| [19] |
WANG F F, WANG J J, FANG D, et al. Surface sizing introducing carbon nanotubes for interfacial bond strengthening of basalt fiber-reinforced polymer composites[J]. Advanced Composites and Hybrid Materials, 2023, 6(3): 117.
doi: 10.1007/s42114-023-00695-4 |
| [20] |
JI D X, SONG S X, LYU Y M, et al. Novel fabrication of basalt nanosheets with ultrahigh aspect ratios toward enhanced mechanical and dielectric properties of aramid nanofiber-based composite nanopapers[J]. Advanced Science, 2023, 10(27): 2302371.
doi: 10.1002/advs.v10.27 |
| [21] |
KIM S H, LEE J H, KIM J W, et al. Interfacial behaviors of basalt fiber-reinforced polymeric composites: a short review[J]. Advanced Fiber Materials, 2022, 4(6): 1414-1433.
doi: 10.1007/s42765-022-00204-0 |
| [22] |
PARK S Y, CHOI H S, CHOI W J, et al. Effect of vacuum thermal cyclic exposures on unidirectional carbon fiber/epoxy composites for low earth orbit space applications[J]. Composites Part B: Engineering, 2012, 43(2): 726-738.
doi: 10.1016/j.compositesb.2011.03.007 |
| [23] |
SHUVALOV V A, GOREV N B, KUCHUGURNYI Y P. Polyimide degradation under atomic oxygen attack[J]. Acta Astronautica, 2023, 207: 118-128.
doi: 10.1016/j.actaastro.2023.03.002 |
| [24] |
SHI Z C, LIANG Z H, HUANG Z Y, et al. Revolutionizing fiber materials for space: multi-scale interface engineering unlocks new aerospace fron-tiers[J]. Materials Today, 2025, 88: 643-704.
doi: 10.1016/j.mattod.2025.06.010 |
| [25] |
GREENBAUM D. Space debris puts exploration at risk[J]. Science, 2020, 370(6519): 922.
doi: 10.1126/science.abf2682 pmid: 33214271 |
| [26] | 李慧敏, 刘淑强, 杜琳琳, 等. 玄武岩/聚酰亚胺三维间隔机织物的参数化建模及高温环境传热数值模拟[J]. 纺织学报, 2025, 46(1): 87-94. |
| LI Huimin, LIU Shuqiang, DU Linlin, et al. Parametric modeling of basalt/polyimide three-dimensional spaced woven fabrics and numerical simulation of heat transfer in high-temperature environments[J]. Journal of Textile Research, 2025, 46(1): 87-94. | |
| [27] |
OH C B, KIM B J, LEE M Y. Synergistic interlaminar strengthening of unidirectional carbon fiber-reinforced composites using carbon nanofiber-modified sizing on the surface of PET interleaves[J]. Composites Part B: Engineering, 2023, 264: 110929.
doi: 10.1016/j.compositesb.2023.110929 |
| [28] |
ZHANG Y W, ZHOU C L, GONG Y F, et al. Synthesis of geopolymer composites utilizing PVA-modified basalt fibers and foundry waste: fundamental properties, cracking resistance and fracture tough-ness[J]. Cement and Concrete Composites, 2025, 160: 106046.
doi: 10.1016/j.cemconcomp.2025.106046 |
| [29] |
DENK J, LIAO X J, DULLE M, et al. Synergistic enhancement of thermomechanical properties and oxidation resistance in aligned co-continuous carbon-ceramic hybrid fibers[J]. Materials Horizons, 2024, 11(22): 5777-5785.
doi: 10.1039/D4MH00956H |
| [30] |
LIAO P C, HE H Y, GUO H C, et al. Highly thermally conductive boron nitride fiber[J]. ACS Nano, 2025, 19(16): 16043-16052.
doi: 10.1021/acsnano.5c02929 pmid: 40228295 |
| [31] |
MILOS F S, CHEN Y K, MAHZARI M. Arcjet tests and thermal response analysis for dual-layer woven carbon phenolic[J]. Journal of Spacecraft and Rockets, 2018, 55(3): 712-722.
doi: 10.2514/1.A34142 |
| [32] |
OLHAN S, BEHERA B K. Development of GNP nanofiller based textile structural composites for enhanced mechanical, thermal, and viscoelastic properties for automotive components[J]. Advanced Composites and Hybrid Materials, 2024, 7(1): 25.
doi: 10.1007/s42114-024-00834-5 |
| [33] |
LIU C, ZHAO R X, LI Q X, et al. Surface engineering of carbon fiber via upcycling of waste gases generated during carbon fiber production: a sustainable approach towards high-performance composites[J]. Composites Part B: Engineering, 2023, 255: 110624.
doi: 10.1016/j.compositesb.2023.110624 |
| [34] |
AL AITI M, JEHNICHEN D, FISCHER D, et al. On the morphology and structure formation of carbon fibers from polymer precursor systems[J]. Progress in Materials Science, 2018, 98: 477-551.
doi: 10.1016/j.pmatsci.2018.07.004 |
| [35] |
MORISHITA T, NARITA M, MATSUSHITA M, et al. Carbon fibre production using an ecofriendly water-soluble precursor[J]. Nature Communications, 2025, 16(1): 4614.
doi: 10.1038/s41467-025-59841-9 |
| [36] | YANG Z C, YANG Y N, HUANG Y F, et al. Wet-spinning of carbon nanotube fibers: dispersion, processing and properties[J]. National Science Review, 2024, 11(10): nwae203. |
| [37] |
HUANG J K, GUO Y Z, LEI X D, et al. Fabricating ultrastrong carbon nanotube fibers via a microwave welding interface[J]. ACS Nano, 2024, 18(22): 14377-14387.
doi: 10.1021/acsnano.4c00522 |
| [38] |
ZHANG X F, LI Q W, TU Y, et al. Strong carbon-nanotube fibers spun from long carbon-nanotube arrays[J]. Small, 2007, 3(2): 244-248.
pmid: 17262764 |
| [39] |
ZHANG X S, LEI X D, JIA X Z, et al. Carbon nanotube fibers with dynamic strength up to 14 GPa[J]. Science, 2024, 384(6702): 1318-1323.
doi: 10.1126/science.adj1082 pmid: 38900888 |
| [40] |
XU Z, GAO C. Graphene fiber: a new trend in carbon fibers[J]. Materials Today, 2015, 18(9): 480-492.
doi: 10.1016/j.mattod.2015.06.009 |
| [41] |
TANG P P, DENG Z M, ZHANG Y, et al. Tough, strong, and conductive graphene fibers by optimizing surface chemistry of graphene oxide precursor[J]. Advanced Functional Materials, 2022, 32(28): 2112156.
doi: 10.1002/adfm.v32.28 |
| [42] |
LI P, WANG Z Q, QI Y X, et al. Bidirectionally promoting assembly order for ultrastiff and highly thermally conductive graphene fibres[J]. Nature Communications, 2024, 15(1): 409.
doi: 10.1038/s41467-024-44692-7 pmid: 38195741 |
| [43] | FANG B, CHANG D, XU Z, et al. A review on graphene fibers: expectations, advances, and pros-pects[J]. Advanced Materials, 2020, 32(5): e1902664. |
| [44] |
KIM T E, KHISHIGBAYAR K E, CHO K Y. Effect of heating rate on the properties of silicon carbide fiber with chemical-vapor-cured polycarbosilane fiber[J]. Journal of Advanced Ceramics, 2017, 6(1): 59-66.
doi: 10.1007/s40145-017-0218-4 |
| [45] |
KANG W F, SHEN Y, YANG T Y, et al. Multifunctional submicron SiC fibers for extreme environments: superior electromagnetic absorption and high-temperature performance[J]. Advanced Functional Materials, 2025, 35(7): 2415432.
doi: 10.1002/adfm.v35.7 |
| [46] |
LIU T, HAN C, WU X H, et al. Melt-blending synthesis of v-GO/PCS precursor for deriving thermostable and microwave-absorbing rGO/SiC fibers[J]. Ceramics International, 2025, 51(13): 17138-17147.
doi: 10.1016/j.ceramint.2025.01.488 |
| [47] | LI Y W, GUO Y B, FU F, et al. Triboelectric basalt textiles efficiently operating within an ultrawide temperature range[J]. Advanced Materials, 2024, 36(28): e2401359. |
| [48] |
MENG Y, LIU J X, XIA Y, et al. Preparation and characterization of continuous basalt fibre with high tensile strength[J]. Ceramics International, 2021, 47(9): 12410-12415.
doi: 10.1016/j.ceramint.2021.01.097 |
| [49] |
SI J W, WANG Z Y, LI J Y, et al. Effects of CaO added to raw basalt on producing continuous basalt fibers and their mechanical properties[J]. Journal of Non-Crystalline Solids, 2021, 568: 120941.
doi: 10.1016/j.jnoncrysol.2021.120941 |
| [50] |
CHEN S, CHEN Y H, ZHAO Y, et al. Status and strategies for fabricating flexible oxide ceramic micro-nanofiber materials[J]. Materials Today, 2022, 61: 139-168.
doi: 10.1016/j.mattod.2022.11.004 |
| [51] |
ADEBISI M A, CHEN C D, MANIKANDAN E, et al. Temperature-controlled synthesis of novel boron nanofibers by laser ablation technique[J]. Materials Chemistry and Physics, 2024, 328: 129960.
doi: 10.1016/j.matchemphys.2024.129960 |
| [52] |
LI S J, UNIVERSITY S, MENG X Y, et al. Revolutionizing inorganic nanofibers: bridging functional elements to a future system[J]. ACS Nano, 2025, 19(15): 14579-14604.
doi: 10.1021/acsnano.4c17688 pmid: 40193232 |
| [53] |
DONG S L, MACIEJEWSKA B, MILLAR R, et al. 3D Electrospinning of Al2O3/ZrO2 fibrous aerogels for multipurpose thermal insulation[J]. Advanced Composites and Hybrid Materials, 2023, 6(5): 186.
doi: 10.1007/s42114-023-00760-y |
| [54] |
PEI X Y, SHANG B, CHEN L, et al. Compression properties of multilayer-connected biaxial weft knitted carbon fiber fabric reinforced composites[J]. Composites Part B: Engineering, 2016, 91: 296-305.
doi: 10.1016/j.compositesb.2015.12.041 |
| [55] |
JANG J, KIM S, LEE K M, et al. Knitted strain sensor with carbon fiber and aluminum-coated yarn, for wearable electronics[J]. Journal of Materials Chemistry C, 2021, 9(46): 16440-16449.
doi: 10.1039/D1TC01899J |
| [56] |
LIU Y J, NATSUKI T, HUANG C Y, et al. Effect of woven structure and aramid binder yarn on the flexural performance of carbon/aramid fiber hybrid three-dimensional woven composites[J]. Polymer Composites, 2022, 43(12): 8831-8849.
doi: 10.1002/pc.v43.12 |
| [57] |
XU F J, ZHANG K, QIU Y. Light-weight, high-gain three-dimensional textile structural composite anten-na[J]. Composites Part B: Engineering, 2020, 185: 107781.
doi: 10.1016/j.compositesb.2020.107781 |
| [58] |
DU L L, ZHANG M, WU G H, et al. Preparation and thermal protection properties of basalt/polyimide three-dimensional spacer woven fabrics[J]. Fibers and Polymers, 2023, 24(5): 1811-1819.
doi: 10.1007/s12221-023-00170-3 |
| [59] |
HUANG Y M, TIAN X Y, LI W D, et al. 3D printing of topologically optimized wing spar with continuous carbon fiber reinforced composites[J]. Composites Part B: Engineering, 2024, 272: 111166.
doi: 10.1016/j.compositesb.2023.111166 |
| [60] |
PARANDOUSH P, ZHOU C, LIN D. 3D printing of ultrahigh strength continuous carbon fiber compo-sites[J]. Advanced Engineering Materials, 2019, 21(2): 1800622.
doi: 10.1002/adem.v21.2 |
| [61] |
QUAN C, HAN B, HOU Z H, et al. 3d printed continuous fiber reinforced composite auxetic honeycomb structures[J]. Composites Part B: Engineering, 2020, 187: 107858.
doi: 10.1016/j.compositesb.2020.107858 |
| [62] |
HUANG Y M, TIAN X Y, ZHENG Z Q, et al. Multiscale concurrent design and 3D printing of continuous fiber reinforced thermoplastic composites with optimized fiber trajectory and topological structure[J]. Composite Structures, 2022, 285: 115241.
doi: 10.1016/j.compstruct.2022.115241 |
| [63] | HAN Y P, MA Y Q, SHI Y N, et al. Effect of lay-up method on preparation of GO-CF/BF hybrid reinforced composites by 3D printing and vacuum infiltration hot pressing system[J]. Polymer Composites, 2025: pc.30120. |
| [64] |
MEI H, LI H, JIN Z P, et al. 3D-printed SiC lattices integrated with lightweight quartz fiber/silica aerogel sandwich structure for thermal protection system[J]. Chemical Engineering Journal, 2023, 454: 140408.
doi: 10.1016/j.cej.2022.140408 |
| [65] |
DI TRANI N, MASINI A, BO T, et al. Probing physicochemical performances of 3D printed carbon fiber composites during 8-month exposure to space environment[J]. Advanced Functional Materials, 2024, 34(13): 2310243.
doi: 10.1002/adfm.v34.13 |
| [66] |
WANG X, ZHANG Y Y, ZHAO Y, et al. A general strategy to fabricate flexible oxide ceramic nanofibers with gradient bending-resilience properties[J]. Advanced Functional Materials, 2021, 31(36): 2103989.
doi: 10.1002/adfm.v31.36 |
| [67] |
XU M H, ZHANG K Y, WANG L, et al. Spider silk inspired bead-like aramid nanofibers via hydrogen-bond donor strategy for synergistic reinforcement of high-performance rubber composite[J]. Composites Part B: Engineering, 2023, 255: 110616.
doi: 10.1016/j.compositesb.2023.110616 |
| [1] | HUA Kerun, LI Jiugang, QIAO Haoran, HE Jiahao, LI Wenbin, XU Weilin. Structural regulation of basalt fiber/cotton interwoven fabric-based evaporators and their photothermal evaporation performance [J]. Journal of Textile Research, 2025, 46(12): 110-115. |
| [2] | FEI Jingyuan, XU Naiku, XIAO Changfa. Design of water collapsible sand mandrel and its application in forming of hollow special-shaped carbon fiber composites [J]. Journal of Textile Research, 2025, 46(11): 137-146. |
| [3] | YUAN Ying, TENG Fengdong, CAO Yutong, YU Junrong, LI Na, HU Zuming, WANG Yan. Research progress in high modulus para-aramid fibers [J]. Journal of Textile Research, 2025, 46(11): 238-246. |
| [4] | WANG Biao, LI Yuan, DONG Jie, ZHANG Qinghua. Influences of stress in thermal imidization on structure and properties of polyimide fibers [J]. Journal of Textile Research, 2025, 46(03): 1-8. |
| [5] | SUN Jingyu, ZHANG Jianwei, YANG Chao, SHE Xilin, LIU Jiaqi. Research progress in sizing agent systems for continuous basalt fibers [J]. Journal of Textile Research, 2025, 46(03): 245-255. |
| [6] | HAN Ye, TIAN Miao. Influence of air gap under firefighting clothing on human thermal protection [J]. Journal of Textile Research, 2025, 46(01): 148-153. |
| [7] | LI Huimin, LIU Shuqiang, DU Linlin, ZHANG Man, WU Gaihong. Parametric modeling of basalt/polyimide three-dimensional spacer woven fabric and numerical simulation of heat transfer in high temperature environment [J]. Journal of Textile Research, 2025, 46(01): 87-94. |
| [8] | YU Wen, DENG Nanping, TANG Xiangquan, KANG Weimin, CHENG Bowen. Review on preparation and applications of electro-blown spun micro-nano inorganic fibers [J]. Journal of Textile Research, 2024, 45(07): 230-239. |
| [9] | YANG Mengxiang, LIU Rangtong, LI Liang, LIU Shuping, LI Shujing. Heat transfer and thermal protection properties under strong thermal conditions of woven fabrics [J]. Journal of Textile Research, 2023, 44(11): 74-82. |
| [10] | XIA Liangjun, CAO Genyang, LIU Xin, XU Weilin. Research progress in color construction of high-performance fibers and its products [J]. Journal of Textile Research, 2023, 44(06): 1-9. |
| [11] | LÜ Jing, LIU Zengwei, CHENG Qingqing, ZHANG Xuetong. Research progress of aramid nanofiber aerogels [J]. Journal of Textile Research, 2023, 44(06): 10-20. |
| [12] | ZHU Xiaorong, XIANG Youhui, HE Jiazhen, ZHAI Li'na. Thermal storage and discharge performance of fabrics with phase change material under low-level radiant heat exposure [J]. Journal of Textile Research, 2023, 44(06): 152-160. |
| [13] | GU Liwen, RUAN Yanwen, LI Hao. Clothing development based on flexible selective laser sintering 3D printing technology [J]. Journal of Textile Research, 2023, 44(04): 154-164. |
| [14] | DAI Lu, HU Zexu, WANG Yan, ZHOU Zhe, ZHANG Fan, ZHU Meifang. Combustion and charring behavior of polyphenylene sulfide/graphene nanocomposite fibers [J]. Journal of Textile Research, 2023, 44(01): 71-78. |
| [15] | ZHAO Lunyu, SUI Xiaofeng, MAO Zhiping, LI Weidong, FENG Xueling. Research progress in aerogel materials application for textiles [J]. Journal of Textile Research, 2022, 43(12): 181-189. |
|
||