Journal of Textile Research ›› 2025, Vol. 46 ›› Issue (12): 233-242.doi: 10.13475/j.fzxb.20250500602

• Comprehensive Review • Previous Articles     Next Articles

Current status and development trends of high-performance inorganic fibers and their products for aerospace and aeronautical applications

SHI Zhicheng1, CHEN Fengxiang1(), WANG Mengyun2, BAI Jie2, LI Juan2, BAI Meng2, FU Guangwei2, XU Weilin1   

  1. 1. State Key Laboratory of New Textile Materials and Advanced Processing, Wuhan Textile University, Wuhan,Hubei 430200, China
    2. China Textile Engineering Society, Beijing 100025, China
  • Received:2025-05-07 Revised:2025-07-25 Online:2025-12-15 Published:2026-02-06
  • Contact: CHEN Fengxiang E-mail:fxchen_czx@wtu.edu.cn

Abstract:

Significance With the rapid advancement of strategic missions such as deep-space exploration, aerospace systems are increasingly exposed to extreme thermal cycling, intense radiation, micrometeoroid impacts, and atomic oxygen erosion. Traditional metallic and organic materials, constrained by high density, limited thermal resistance, and short service life, are insufficient to meet the requirements of next-generation aerospace systems. In contrast, high-performance inorganic fibers-characterized by low density, high specific strength, exceptional thermal stability, radiation resistance, and chemical durability-have emerged as key materials for integrated structural and functional design. A systematic review of their classifications, applications, and technological trends is therefore of great scientific and engineering significance, providing guidance to overcome current material limitations and accelerate independent innovation in advanced aerospace systems.

Progress High-performance inorganic fibers-including carbon-based, quartz, oxide, silicon carbide, boron-based, and basalt fibers-have been systematically reviewed with respect to their structural characteristics and performance advantages under complex aerospace service environments. These fibers meet diverse requirements for mechanical strength, functional integration, lightweight design, and sustainability. Research progress has focused on forming technologies and intrinsic property enhancement mechanisms, including precursor design, heat treatment, and microstructural regulation, which have improved fiber strength, toughness, and stability. In addition, the structural processing and functional applications of fiber-based products have been summarized, highlighting the potential of advanced intelligent manufacturing technologies-such as three-dimensional weaving and 3D printing-for the fabrication of complex structures and multifunctional integration. These advances indicate that future development of inorganic fibers must emphasize structure-property prediction, multifunctional design, and green intelligent manufacturing to enable reliable long-term service and sustainable development of next-generation aerospace systems.

Conclusion and Prospect High-performance inorganic fibers have become indispensable to aerospace material systems; however, their development still faces significant challenges. The microstructure-property correlation remains insufficiently understood; multifunctional integration often involves trade-offs that hinder the simultaneous optimization of mechanical strength, thermal protection, and sensing capabilities; and manufacturing remains energy-intensive, costly, and technologically dependent on imports, constraining large-scale applications and autonomy. Addressing these challenges requires a focus on multifunctional integration, intelligent responsiveness, and green manufacturing. Emphasis should be placed on synergistic fiber integration, gradient structural design, and interface engineering to achieve combined load-bearing, protection, and sensing functions with systematic performance optimization. Research on intelligent fiber-based materials should be accelerated to enable self-sensing, self-healing, and enhanced environmental adaptability, thereby improving reliability under extreme aerospace conditions. Priority must also be given to low-energy, high-efficiency green manufacturing and recycling technologies to support closed-loop lifecycle management and promote sustainability. In parallel, advancing the localization of core manufacturing technologies is essential for establishing an autonomous supply chain and securing strategic advantages in the global aerospace sector.

Key words: aerospace and aeronautic application, inorganic fiber, thermal protection, weaving technology, 3D printing, high-performance fiber, silicon carbide fiber, basalt fiber

CLC Number: 

  • TS102.4
[1] CHA J H, KUMAR S K S, JANG W H, et al. Multidisciplinary space shield origami composite: incorporating cosmic radiation shielding, space debris impact protection, solar radiative heat shielding, and atomic oxygen erosion resistance[J]. Composites Part B: Engineering, 2025, 288: 111876.
doi: 10.1016/j.compositesb.2024.111876
[2] BUCHANAN M. It's time to tackle space debris[J]. Nature Physics, 2024, 20(5): 680.
doi: 10.1038/s41567-024-02501-4
[3] NISHIDA M, KIMURA D, ASHIDA K, et al. Effects of electron beam and atomic oxygen irradiation on hypervelocity - Impact tested/polyimide coated carbon fiber-reinforced plates[J]. Composites Part B: Engineering, 2025, 288: 111877.
doi: 10.1016/j.compositesb.2024.111877
[4] ZHANG Y, LUO Y X, WANG M Q, et al. Advances in colored carbon-based fiber materials and their emerging applications[J]. SusMat, 2024, 4(6): e243.
doi: 10.1002/sus2.v4.6
[5] WANG Y M, QIN W W, CHEN Z, et al. Fine-grain high-performance densified oxide fibers produced by open ultrafast high-temperature sintering[J]. Advanced Materials, 2024, 36(48): e2412139.
[6] INCE J C, PEERZADA M, MATHEWS L D, et al. Overview of emerging hybrid and composite materials for space applications[J]. Advanced Composites and Hybrid Materials, 2023, 6(4): 130.
doi: 10.1007/s42114-023-00678-5
[7] GAO S, MA T H, ZHOU N N, et al. Extremely compact and lightweight triboelectric nanogenerator for spacecraft flywheel system health monitoring[J]. Nano Energy, 2024, 122: 109330.
doi: 10.1016/j.nanoen.2024.109330
[8] SUN Z L, LUO Y X, CHEN C Y, et al. Mechanical enhancement of carbon fiber-reinforced polymers: from interfacial regulating strategies to advanced processing technologies[J]. Progress in Materials Science, 2024, 142: 101221.
doi: 10.1016/j.pmatsci.2023.101221
[9] WANG F, ZHAO S M, JIANG Q Y, et al. Advanced functional carbon nanotube fibers from preparation to application[J]. Cell Reports Physical Science, 2022, 3(8): 100989.
doi: 10.1016/j.xcrp.2022.100989
[10] 蹇木强, 张莹莹, 刘忠范. 石墨烯纤维:制备、性能与应用[J]. 物理化学学报, 2022, 38(2): 22-39.
JIAN Muqiang, ZHANG Yingying, LIU Zhongfan. Graphene fibers: preparation, properties and applications[J]. Acta Physico-Chimica Sinica, 2022, 38(2): 22-39.
[11] 李久刚, 石玉菲, 刘可帅, 等. 石英纱线/石英纤维毡三维织物的设计及其隔热性能[J]. 纺织学报, 2024, 45(6): 53-58.
LI Jiugang, SHI Yufei, Liu Keshuai, et al. The design of three-dimensional fabrics made of quartz yarns/quartz fiber felts and their thermal insulation properties[J]. Journal of Textile Research, 2024, 45(6): 53-58.
[12] LIU Z X, ZHAO W K, YU G C, et al. Fabrication and mechanical behaviors of quartz fiber composite honeycomb with extremely low permittivity[J]. Composite Structures, 2021, 271: 114129.
doi: 10.1016/j.compstruct.2021.114129
[13] XU Z, LIU H L, WU F, et al. Inhibited grain growth through phase transition modulation enables excellent mechanical properties in oxide ceramic nanofibers up to 1700 ℃[J]. Advanced Materials, 2023, 35(44): e2305336.
[14] LIU C, LIAO Y L, JIAO W L, et al. High toughness combined with high strength in oxide ceramic nano-fibers[J]. Advanced Materials, 2023, 35(32): e2304401.
[15] 郭伟娜, 辛三法, 胡文锋, 等. 碳化硅纤维预制体编织损伤特性研究[J]. 纺织学报, 2022, 43(12): 69-74.
doi: 10.13475/j.fzxb.20210904006
GUO Weina, XIN Sanfa, HU Wenfeng, et al. Research on the damage characteristics of silicon carbide fiber preforms during spinning[J]. Journal of Textile Research, 2022, 43(12): 69-74.
doi: 10.13475/j.fzxb.20210904006
[16] RUDDY F H, OTTAVIANI L, LYOUSSI A, et al. Silicon carbide neutron detectors for harsh nuclear environments: a review of the state of the art[J]. IEEE Transactions on Nuclear Science, 2022, 69(4): 792-803.
doi: 10.1109/TNS.2022.3144125
[17] MAITA J M, SONG G, COLBY M, et al. Atomic arrangement and mechanical properties of chemical-vapor-deposited amorphous boron[J]. Materials & Design, 2020, 193: 108856.
[18] WU C Z, WANG B, WU N, et al. Molecular-scale understanding on the structure evolution from melamine diborate supramolecule to boron nitride fibers[J]. Ceramics International, 2020, 46(1): 1083-1090.
doi: 10.1016/j.ceramint.2019.09.075
[19] WANG F F, WANG J J, FANG D, et al. Surface sizing introducing carbon nanotubes for interfacial bond strengthening of basalt fiber-reinforced polymer composites[J]. Advanced Composites and Hybrid Materials, 2023, 6(3): 117.
doi: 10.1007/s42114-023-00695-4
[20] JI D X, SONG S X, LYU Y M, et al. Novel fabrication of basalt nanosheets with ultrahigh aspect ratios toward enhanced mechanical and dielectric properties of aramid nanofiber-based composite nanopapers[J]. Advanced Science, 2023, 10(27): 2302371.
doi: 10.1002/advs.v10.27
[21] KIM S H, LEE J H, KIM J W, et al. Interfacial behaviors of basalt fiber-reinforced polymeric composites: a short review[J]. Advanced Fiber Materials, 2022, 4(6): 1414-1433.
doi: 10.1007/s42765-022-00204-0
[22] PARK S Y, CHOI H S, CHOI W J, et al. Effect of vacuum thermal cyclic exposures on unidirectional carbon fiber/epoxy composites for low earth orbit space applications[J]. Composites Part B: Engineering, 2012, 43(2): 726-738.
doi: 10.1016/j.compositesb.2011.03.007
[23] SHUVALOV V A, GOREV N B, KUCHUGURNYI Y P. Polyimide degradation under atomic oxygen attack[J]. Acta Astronautica, 2023, 207: 118-128.
doi: 10.1016/j.actaastro.2023.03.002
[24] SHI Z C, LIANG Z H, HUANG Z Y, et al. Revolutionizing fiber materials for space: multi-scale interface engineering unlocks new aerospace fron-tiers[J]. Materials Today, 2025, 88: 643-704.
doi: 10.1016/j.mattod.2025.06.010
[25] GREENBAUM D. Space debris puts exploration at risk[J]. Science, 2020, 370(6519): 922.
doi: 10.1126/science.abf2682 pmid: 33214271
[26] 李慧敏, 刘淑强, 杜琳琳, 等. 玄武岩/聚酰亚胺三维间隔机织物的参数化建模及高温环境传热数值模拟[J]. 纺织学报, 2025, 46(1): 87-94.
LI Huimin, LIU Shuqiang, DU Linlin, et al. Parametric modeling of basalt/polyimide three-dimensional spaced woven fabrics and numerical simulation of heat transfer in high-temperature environments[J]. Journal of Textile Research, 2025, 46(1): 87-94.
[27] OH C B, KIM B J, LEE M Y. Synergistic interlaminar strengthening of unidirectional carbon fiber-reinforced composites using carbon nanofiber-modified sizing on the surface of PET interleaves[J]. Composites Part B: Engineering, 2023, 264: 110929.
doi: 10.1016/j.compositesb.2023.110929
[28] ZHANG Y W, ZHOU C L, GONG Y F, et al. Synthesis of geopolymer composites utilizing PVA-modified basalt fibers and foundry waste: fundamental properties, cracking resistance and fracture tough-ness[J]. Cement and Concrete Composites, 2025, 160: 106046.
doi: 10.1016/j.cemconcomp.2025.106046
[29] DENK J, LIAO X J, DULLE M, et al. Synergistic enhancement of thermomechanical properties and oxidation resistance in aligned co-continuous carbon-ceramic hybrid fibers[J]. Materials Horizons, 2024, 11(22): 5777-5785.
doi: 10.1039/D4MH00956H
[30] LIAO P C, HE H Y, GUO H C, et al. Highly thermally conductive boron nitride fiber[J]. ACS Nano, 2025, 19(16): 16043-16052.
doi: 10.1021/acsnano.5c02929 pmid: 40228295
[31] MILOS F S, CHEN Y K, MAHZARI M. Arcjet tests and thermal response analysis for dual-layer woven carbon phenolic[J]. Journal of Spacecraft and Rockets, 2018, 55(3): 712-722.
doi: 10.2514/1.A34142
[32] OLHAN S, BEHERA B K. Development of GNP nanofiller based textile structural composites for enhanced mechanical, thermal, and viscoelastic properties for automotive components[J]. Advanced Composites and Hybrid Materials, 2024, 7(1): 25.
doi: 10.1007/s42114-024-00834-5
[33] LIU C, ZHAO R X, LI Q X, et al. Surface engineering of carbon fiber via upcycling of waste gases generated during carbon fiber production: a sustainable approach towards high-performance composites[J]. Composites Part B: Engineering, 2023, 255: 110624.
doi: 10.1016/j.compositesb.2023.110624
[34] AL AITI M, JEHNICHEN D, FISCHER D, et al. On the morphology and structure formation of carbon fibers from polymer precursor systems[J]. Progress in Materials Science, 2018, 98: 477-551.
doi: 10.1016/j.pmatsci.2018.07.004
[35] MORISHITA T, NARITA M, MATSUSHITA M, et al. Carbon fibre production using an ecofriendly water-soluble precursor[J]. Nature Communications, 2025, 16(1): 4614.
doi: 10.1038/s41467-025-59841-9
[36] YANG Z C, YANG Y N, HUANG Y F, et al. Wet-spinning of carbon nanotube fibers: dispersion, processing and properties[J]. National Science Review, 2024, 11(10): nwae203.
[37] HUANG J K, GUO Y Z, LEI X D, et al. Fabricating ultrastrong carbon nanotube fibers via a microwave welding interface[J]. ACS Nano, 2024, 18(22): 14377-14387.
doi: 10.1021/acsnano.4c00522
[38] ZHANG X F, LI Q W, TU Y, et al. Strong carbon-nanotube fibers spun from long carbon-nanotube arrays[J]. Small, 2007, 3(2): 244-248.
pmid: 17262764
[39] ZHANG X S, LEI X D, JIA X Z, et al. Carbon nanotube fibers with dynamic strength up to 14 GPa[J]. Science, 2024, 384(6702): 1318-1323.
doi: 10.1126/science.adj1082 pmid: 38900888
[40] XU Z, GAO C. Graphene fiber: a new trend in carbon fibers[J]. Materials Today, 2015, 18(9): 480-492.
doi: 10.1016/j.mattod.2015.06.009
[41] TANG P P, DENG Z M, ZHANG Y, et al. Tough, strong, and conductive graphene fibers by optimizing surface chemistry of graphene oxide precursor[J]. Advanced Functional Materials, 2022, 32(28): 2112156.
doi: 10.1002/adfm.v32.28
[42] LI P, WANG Z Q, QI Y X, et al. Bidirectionally promoting assembly order for ultrastiff and highly thermally conductive graphene fibres[J]. Nature Communications, 2024, 15(1): 409.
doi: 10.1038/s41467-024-44692-7 pmid: 38195741
[43] FANG B, CHANG D, XU Z, et al. A review on graphene fibers: expectations, advances, and pros-pects[J]. Advanced Materials, 2020, 32(5): e1902664.
[44] KIM T E, KHISHIGBAYAR K E, CHO K Y. Effect of heating rate on the properties of silicon carbide fiber with chemical-vapor-cured polycarbosilane fiber[J]. Journal of Advanced Ceramics, 2017, 6(1): 59-66.
doi: 10.1007/s40145-017-0218-4
[45] KANG W F, SHEN Y, YANG T Y, et al. Multifunctional submicron SiC fibers for extreme environments: superior electromagnetic absorption and high-temperature performance[J]. Advanced Functional Materials, 2025, 35(7): 2415432.
doi: 10.1002/adfm.v35.7
[46] LIU T, HAN C, WU X H, et al. Melt-blending synthesis of v-GO/PCS precursor for deriving thermostable and microwave-absorbing rGO/SiC fibers[J]. Ceramics International, 2025, 51(13): 17138-17147.
doi: 10.1016/j.ceramint.2025.01.488
[47] LI Y W, GUO Y B, FU F, et al. Triboelectric basalt textiles efficiently operating within an ultrawide temperature range[J]. Advanced Materials, 2024, 36(28): e2401359.
[48] MENG Y, LIU J X, XIA Y, et al. Preparation and characterization of continuous basalt fibre with high tensile strength[J]. Ceramics International, 2021, 47(9): 12410-12415.
doi: 10.1016/j.ceramint.2021.01.097
[49] SI J W, WANG Z Y, LI J Y, et al. Effects of CaO added to raw basalt on producing continuous basalt fibers and their mechanical properties[J]. Journal of Non-Crystalline Solids, 2021, 568: 120941.
doi: 10.1016/j.jnoncrysol.2021.120941
[50] CHEN S, CHEN Y H, ZHAO Y, et al. Status and strategies for fabricating flexible oxide ceramic micro-nanofiber materials[J]. Materials Today, 2022, 61: 139-168.
doi: 10.1016/j.mattod.2022.11.004
[51] ADEBISI M A, CHEN C D, MANIKANDAN E, et al. Temperature-controlled synthesis of novel boron nanofibers by laser ablation technique[J]. Materials Chemistry and Physics, 2024, 328: 129960.
doi: 10.1016/j.matchemphys.2024.129960
[52] LI S J, UNIVERSITY S, MENG X Y, et al. Revolutionizing inorganic nanofibers: bridging functional elements to a future system[J]. ACS Nano, 2025, 19(15): 14579-14604.
doi: 10.1021/acsnano.4c17688 pmid: 40193232
[53] DONG S L, MACIEJEWSKA B, MILLAR R, et al. 3D Electrospinning of Al2O3/ZrO2 fibrous aerogels for multipurpose thermal insulation[J]. Advanced Composites and Hybrid Materials, 2023, 6(5): 186.
doi: 10.1007/s42114-023-00760-y
[54] PEI X Y, SHANG B, CHEN L, et al. Compression properties of multilayer-connected biaxial weft knitted carbon fiber fabric reinforced composites[J]. Composites Part B: Engineering, 2016, 91: 296-305.
doi: 10.1016/j.compositesb.2015.12.041
[55] JANG J, KIM S, LEE K M, et al. Knitted strain sensor with carbon fiber and aluminum-coated yarn, for wearable electronics[J]. Journal of Materials Chemistry C, 2021, 9(46): 16440-16449.
doi: 10.1039/D1TC01899J
[56] LIU Y J, NATSUKI T, HUANG C Y, et al. Effect of woven structure and aramid binder yarn on the flexural performance of carbon/aramid fiber hybrid three-dimensional woven composites[J]. Polymer Composites, 2022, 43(12): 8831-8849.
doi: 10.1002/pc.v43.12
[57] XU F J, ZHANG K, QIU Y. Light-weight, high-gain three-dimensional textile structural composite anten-na[J]. Composites Part B: Engineering, 2020, 185: 107781.
doi: 10.1016/j.compositesb.2020.107781
[58] DU L L, ZHANG M, WU G H, et al. Preparation and thermal protection properties of basalt/polyimide three-dimensional spacer woven fabrics[J]. Fibers and Polymers, 2023, 24(5): 1811-1819.
doi: 10.1007/s12221-023-00170-3
[59] HUANG Y M, TIAN X Y, LI W D, et al. 3D printing of topologically optimized wing spar with continuous carbon fiber reinforced composites[J]. Composites Part B: Engineering, 2024, 272: 111166.
doi: 10.1016/j.compositesb.2023.111166
[60] PARANDOUSH P, ZHOU C, LIN D. 3D printing of ultrahigh strength continuous carbon fiber compo-sites[J]. Advanced Engineering Materials, 2019, 21(2): 1800622.
doi: 10.1002/adem.v21.2
[61] QUAN C, HAN B, HOU Z H, et al. 3d printed continuous fiber reinforced composite auxetic honeycomb structures[J]. Composites Part B: Engineering, 2020, 187: 107858.
doi: 10.1016/j.compositesb.2020.107858
[62] HUANG Y M, TIAN X Y, ZHENG Z Q, et al. Multiscale concurrent design and 3D printing of continuous fiber reinforced thermoplastic composites with optimized fiber trajectory and topological structure[J]. Composite Structures, 2022, 285: 115241.
doi: 10.1016/j.compstruct.2022.115241
[63] HAN Y P, MA Y Q, SHI Y N, et al. Effect of lay-up method on preparation of GO-CF/BF hybrid reinforced composites by 3D printing and vacuum infiltration hot pressing system[J]. Polymer Composites, 2025: pc.30120.
[64] MEI H, LI H, JIN Z P, et al. 3D-printed SiC lattices integrated with lightweight quartz fiber/silica aerogel sandwich structure for thermal protection system[J]. Chemical Engineering Journal, 2023, 454: 140408.
doi: 10.1016/j.cej.2022.140408
[65] DI TRANI N, MASINI A, BO T, et al. Probing physicochemical performances of 3D printed carbon fiber composites during 8-month exposure to space environment[J]. Advanced Functional Materials, 2024, 34(13): 2310243.
doi: 10.1002/adfm.v34.13
[66] WANG X, ZHANG Y Y, ZHAO Y, et al. A general strategy to fabricate flexible oxide ceramic nanofibers with gradient bending-resilience properties[J]. Advanced Functional Materials, 2021, 31(36): 2103989.
doi: 10.1002/adfm.v31.36
[67] XU M H, ZHANG K Y, WANG L, et al. Spider silk inspired bead-like aramid nanofibers via hydrogen-bond donor strategy for synergistic reinforcement of high-performance rubber composite[J]. Composites Part B: Engineering, 2023, 255: 110616.
doi: 10.1016/j.compositesb.2023.110616
[1] HUA Kerun, LI Jiugang, QIAO Haoran, HE Jiahao, LI Wenbin, XU Weilin. Structural regulation of basalt fiber/cotton interwoven fabric-based evaporators and their photothermal evaporation performance [J]. Journal of Textile Research, 2025, 46(12): 110-115.
[2] FEI Jingyuan, XU Naiku, XIAO Changfa. Design of water collapsible sand mandrel and its application in forming of hollow special-shaped carbon fiber composites [J]. Journal of Textile Research, 2025, 46(11): 137-146.
[3] YUAN Ying, TENG Fengdong, CAO Yutong, YU Junrong, LI Na, HU Zuming, WANG Yan. Research progress in high modulus para-aramid fibers [J]. Journal of Textile Research, 2025, 46(11): 238-246.
[4] WANG Biao, LI Yuan, DONG Jie, ZHANG Qinghua. Influences of stress in thermal imidization on structure and properties of polyimide fibers [J]. Journal of Textile Research, 2025, 46(03): 1-8.
[5] SUN Jingyu, ZHANG Jianwei, YANG Chao, SHE Xilin, LIU Jiaqi. Research progress in sizing agent systems for continuous basalt fibers [J]. Journal of Textile Research, 2025, 46(03): 245-255.
[6] HAN Ye, TIAN Miao. Influence of air gap under firefighting clothing on human thermal protection [J]. Journal of Textile Research, 2025, 46(01): 148-153.
[7] LI Huimin, LIU Shuqiang, DU Linlin, ZHANG Man, WU Gaihong. Parametric modeling of basalt/polyimide three-dimensional spacer woven fabric and numerical simulation of heat transfer in high temperature environment [J]. Journal of Textile Research, 2025, 46(01): 87-94.
[8] YU Wen, DENG Nanping, TANG Xiangquan, KANG Weimin, CHENG Bowen. Review on preparation and applications of electro-blown spun micro-nano inorganic fibers [J]. Journal of Textile Research, 2024, 45(07): 230-239.
[9] YANG Mengxiang, LIU Rangtong, LI Liang, LIU Shuping, LI Shujing. Heat transfer and thermal protection properties under strong thermal conditions of woven fabrics [J]. Journal of Textile Research, 2023, 44(11): 74-82.
[10] XIA Liangjun, CAO Genyang, LIU Xin, XU Weilin. Research progress in color construction of high-performance fibers and its products [J]. Journal of Textile Research, 2023, 44(06): 1-9.
[11] LÜ Jing, LIU Zengwei, CHENG Qingqing, ZHANG Xuetong. Research progress of aramid nanofiber aerogels [J]. Journal of Textile Research, 2023, 44(06): 10-20.
[12] ZHU Xiaorong, XIANG Youhui, HE Jiazhen, ZHAI Li'na. Thermal storage and discharge performance of fabrics with phase change material under low-level radiant heat exposure [J]. Journal of Textile Research, 2023, 44(06): 152-160.
[13] GU Liwen, RUAN Yanwen, LI Hao. Clothing development based on flexible selective laser sintering 3D printing technology [J]. Journal of Textile Research, 2023, 44(04): 154-164.
[14] DAI Lu, HU Zexu, WANG Yan, ZHOU Zhe, ZHANG Fan, ZHU Meifang. Combustion and charring behavior of polyphenylene sulfide/graphene nanocomposite fibers [J]. Journal of Textile Research, 2023, 44(01): 71-78.
[15] ZHAO Lunyu, SUI Xiaofeng, MAO Zhiping, LI Weidong, FENG Xueling. Research progress in aerogel materials application for textiles [J]. Journal of Textile Research, 2022, 43(12): 181-189.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!