Journal of Textile Research ›› 2025, Vol. 46 ›› Issue (12): 251-259.doi: 10.13475/j.fzxb.20250501002

• Comprehensive Review • Previous Articles     Next Articles

Recent advances in recycling of polyethylene terephthalate textiles waste

YANG Yingxue1,2, GAO Nianzhao1, DENG Nianming3, JIANG Jinghui3, DONG Qingqi3, LIU Xiangdong1,2()   

  1. 1. Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Modern Textile Technology Innovation Center (Jianhu Laboratory), Shaoxing, Zhejiang 312030, China
    3. Zhejiang Hengyi High-Tech Materials Co., Ltd., Hangzhou, Zhejiang 311222, China
  • Received:2025-05-10 Revised:2025-08-07 Online:2025-12-15 Published:2026-02-06
  • Contact: LIU Xiangdong E-mail:liuxd@zstu.edu.cn

Abstract:

Significance Under the concept of sustainable development, recycling waste polyester (PET) textiles has gained growing attention. Many countries have legislated to encourage this, and some renowned clothing brands aim to use 100% recycled PET in products by 2030. As a major PET fiber producer, China's efforts not only help reduce the environmental impact, lower resource waste, but also stimulate the technology advancement. However, it faces challenges such as low recycling rates and limited high-value use. This paper reviews the advancements in chemical recycling of PET textiles, summarizes their characteristics and challenges, and highlights the development trends of waste PET textile recycling technologies to promote sustainable utilization in the PET recycling industry.

Progress Chain extension and polycondensation technologies, classified under physical-chemical recycling, significantly enhance the melt viscosity of PET, thereby improving the quality of recycled fibers. Current research primarily focuses on the development of highly efficient chain extenders. Diguaiacyl oxalate, a reactive extender with high efficacy, not only increases the molecular weight of recycled PET but also allows for complete removal of post-reaction, effectively addressing traditional residue challenges. True chemical recycling involves depolymerizing waste PET into monomers, which can then be re-polycondensed to produce virgin-quality fibers. This process can be achieved through either bio-chemical or purely chemical depolymerization methods. Chemical approaches, such as methanolysis, glycolysis, and hydrolysis, aim to maximize monomer yield while optimizing catalyst performance. For example, the magnetic CoFe2O4 catalyst facilitates easy separation and maintains its activity after five cycles. Potassium carbonate enables PET methanolysis at room temperature, achieving a 93.1% dimethyl terephthalate (DMT) yield within 24 h. A novel acetic acid-based process developed in 2024 successfully depolymerizes PET at 280 ℃ within 2 h, yielding 95.8% terephthalic acid (TPA) with 99.7% purity and 95.3% ethylene glycol diacetate with 98.0% purity. Bio-chemical depolymerization emphasizes the use of highly efficient enzymes. The LCC quadruple mutant (LCCICCG) demonstrates the ability to depolymerize 90% of pretreated PET at 72 ℃ within 10 h. Furthermore, the computationally engineered LCC-A2 variant enhances efficiency, achieving over 99% TPA and ethylene glycol (EG) yields.

Conclusion and Prospect Currently, the recycling rate of waste PET textiles in China remains relatively low, with the majority being disposed of through landfill or incineration. Physical recycling is currently the predominant method, whereas chemical recycling plays a minor role. In physical-chemical recycling, there is a need for low-toxicity and residue-free chain extenders. Chemical catalytic depolymerization has made significant progress, particularly in the development of efficient catalysts for methanolysis, glycolysis, and hydrolysis. Bio-chemical depolymerization, which is environmentally friendly, encounters challenges such as enzyme thermal instability and low degradation efficiency for highly crystalline PET, with most studies still confined to laboratory settings. Future research should focus on optimizing chemical reactions to reduce costs and improve yields, as well as exploring bio-chemical depolymerization through protein engineering and machine learning techniques to enhance enzyme performance and achieve effective degradation of crystalline PET.

Key words: waste polyester, waste textiles, polyester recycling, polyester chain extending technology, catalytic depolymerization of polyester, polyester degradation enzyme, chemical regeneration

CLC Number: 

  • TS159

Fig.1

Recycling routes, technical problems and research and development hotspots of waste polyester textiles"

Fig.2

Schematic diagram of "alcoholysis and self-condensation method" process"

Tab.1

Key technical issues of PET depolymerization enzymes in future industrial applications"

因素 技术难点 建议解决方法
PET结晶 PET结晶区酶解困难 PET产品非晶化处理
反应界面 底物比表面积小,导致酶分解速率下降 底物粉碎(<500 μm),增加反应表面积
解聚温度 温度低于PET的玻璃化转变温度时,底物构象限制反应活性 提升酶热稳定性,使其适应高反应温度
PET再结晶 降解的PET低聚物在较高温度下再结晶 开发高效降解酶,加速酶降解速率
PET浓度 已报道PET实验浓度远低于高生产率工艺要求 提高初始PET负荷,提升TPA生产率
解聚产量 酶活性在反应过程中逐渐减弱 提高降解酶耐久性
解聚物成分 酶解聚产生单(2-羟乙基)对苯二甲酸酯(MHET)、可溶性低聚物等副产物 提升酶完全降解PET的效能
酶的供应性 降解酶的供应限制影响工业规模应用 扩大降解酶的生产供应能力
[1] 2024-2029年中国废旧纺织品行业深度调研及投资机会分析报告[R]. 北京: 中国产业研究院, 2024.
2024-2029 China waste textile industry in-depth research and investment opportunity analysis report[R]. Beijing: China Academy of Industry Research, 2024.
[2] KULATHUNGA M M S. Fabric waste recycling in the global context[J]. Journal of Research Technology & Engineering, 2023, 4(2): 173-181.
[3] 陈龙, 周哲, 张军, 等. 废旧棉与涤纶纺织品化学法循环再生利用的研究进展[J]. 纺织学报, 2022, 43(5): 43-48.
CHEN Long, ZHOU Zhe, ZHANG Jun, et al. Research progress on chemical recycling of waste cotton and polyester textiles[J]. Journal of Textile Research, 2022, 43(5): 43-48.
[4] 2023年中国化纤行业运行分析与2024年展望[R]. 北京: 中国化学纤维工业协会, 2024.
Operation analysis of China's chemical fiber industry in 2023 and outlook in 2024[R]. Beijing: China Chemical Fiber Industry Association, 2024.
[5] LIN J Y, YE W Y, XIE M, et al. Environmental impacts and remediation of dye-containing waste-water[J]. Nature Reviews Earth & Environment, 2023, 4(11): 785-803.
[6] 顾青. 再生涤纶在加工生产中的现状分析[J]. 轻纺工业与技术, 2024, 53(1): 52-56.
GU Qing. Analysis of the current situation of recycled polyester in processing and production[J]. Textile Industry and Technology, 2024, 53(1): 52-56.
[7] ANDINI E, BHALODE P, GANTERT E, et al. Chemical recycling of mixed textile waste[J]. Science Advances, 2024, 10(27): eado6827.
[8] EL DARAI T, TER-HALLE A, BLANZAT M, et al. Chemical recycling of polyester textile wastes: shifting towards sustainability[J]. Green Chemistry, 2024, 26(12): 6857-6885.
doi: 10.1039/D4GC00911H
[9] MORENO-MARRODÁN C, BRANDI F, BARBARO P, et al. Advances in catalytic chemical recycling of synthetic textiles[J]. Green Chemistry, 2024, 26(24): 11832-11859.
doi: 10.1039/D4GC04768K
[10] BOHRE A, JADHAO P R, TRIPATHI K, et al. Chemical recycling processes of waste polyethylene terephthalate using solid catalysts[J]. ChemSusChem, 2023, 16(14): e202300142.
doi: 10.1002/cssc.v16.14
[11] 罗立滨, 陈溶, 连雨欣, 等. 以废旧聚酯纺织品为原料原位增黏生产再生涤纶的研究[J]. 福建师范大学学报(自然科学版), 2023, 39(5): 18-24.
LUO Libin, CHEN Rong, LIAN Yuxin, et al. Research on in-situ viscosity production of recycled polyester from waste polyester textiles[J]. Journal of Fujian Normal University (Natural Science Edition), 2023, 39(5): 18-24.
[12] SANG T, WALLIS C J, HILL G, et al. Polyethylene terephthalate degradation under natural and accelerated weathering conditions[J]. European Polymer Journal, 2020, 136: 109873.
doi: 10.1016/j.eurpolymj.2020.109873
[13] JANG J Y, SADEGHI K, SEO J. Chain-extending modification for value-added recycled PET: a review[J]. Polymer Reviews, 2022, 62(4): 860-889.
doi: 10.1080/15583724.2022.2033765
[14] VAN DER MAAS K, WEINLAND D H, VAN PUTTEN R J, et al. Catalyst free PET and PEF polyesters using a new traceless oxalate chain extender[J]. Green Chemistry, 2024, 26(22): 11182-11195.
doi: 10.1039/D4GC02791D
[15] 吴文君, 孙晓丽, 张飞鹏, 等. 废旧聚酯织物原位反应增黏制备再生聚酯单丝研究[J]. 再生资源与循环经济, 2022, 15(5): 25-29.
WU Wenjun, SUN Xiaoli, ZHANG Feipeng, et al. Research on the preparation of recycled polyester monofilament by in-situ reaction tackification of waste polyester fabrics[J]. Renewable Resources and Circular Economy, 2022, 15(5): 25-29.
[16] DAMAYANTI , WU H S. Strategic possibility routes of recycled PET[J]. Polymers, 2021, 13(9): 1475.
doi: 10.3390/polym13091475
[17] MUSZYŃSKI M, NOWICKI J, ZYGADŁO M,et al. Comparsion of catalyst effectiveness in different chemical depolymerization methods of poly(ethylene terephthalate)[J]. Molecules, 2023, 28(17): 6385.
doi: 10.3390/molecules28176385
[18] XIN J Y, ZHANG Q, HUANG J J, et al. Progress in the catalytic glycolysis of polyethylene terephthalate[J]. Journal of Environmental Management, 2021, 296: 113267.
doi: 10.1016/j.jenvman.2021.113267
[19] KIM Y, JANG T, HWANG H, et al. Development of glycolysis catalysts for PET wastes including polyester textiles[J]. Fibers and Polymers, 2025, 26(1): 1-17.
doi: 10.1007/s12221-024-00807-x
[20] ÜGDÜLER S, VAN GEEM K M, DENOLF R, et al. Towards closed-loop recycling of multilayer and coloured PET plastic waste by alkaline hydrolysis[J]. Green Chemistry, 2020, 22(16): 5376-5394.
doi: 10.1039/D0GC00894J
[21] 钱伯章. Axens建立合作伙伴关系共同开发PET化学回收新工艺[J]. 合成纤维, 2020, 49(11): 59.
QIAN Bozhang. Axens has entered into a partnership to develop a new process for PET chemical recycling[J]. Synthetic Fiber in China, 2020, 49(11): 59.
[22] 钱伯章. Saipem与Garbo联手推进PET解聚技术[J]. 聚酯工业, 2023, 36(3): 43.
QIAN Bozhang. Saipem and Garbo have joined forces to advance PET depolymerization technology[J]. Polyester Industry, 2023, 36(3): 43.
[23] 钱伯章. Koch科技和Ioniqa技术合作伙伴通过先进的PET升级回收技术颠覆塑料行业[J]. 聚酯工业, 2022, 35(5): 17.
QIAN Bozhang. Koch Technology and Ioniqa Technology Partners are disrupting the plastics industry with advanced PET upcycling technology[J]. Polyester Industry, 2022, 35(5): 17.
[24] HA G S, AL MAMUNUR RASHID M, HA J M, et al. Enhancing polyethylene terephthalate conversion through efficient microwave-assisted deep eutectic solvent-catalyzed glycolysis[J]. Chemosphere, 2024, 349: 140781.
doi: 10.1016/j.chemosphere.2023.140781
[25] LUO Y Q, SELVAM E, VLACHOS D G, et al. Economic and environmental benefits of modular microwave-assisted polyethylene terephthalate depolymerization[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(10): 4209-4218.
[26] JO Y, KIM E J, KIM J, et al. Efficient Fe3O4 nanoparticle catalysts for depolymerization of polyethylene terephthalate[J]. Green Chemistry, 2023, 25(20): 8160-8171.
doi: 10.1039/D3GC01707A
[27] KIM E H, PARK I, KIM S, et al. Chemical recycling of polyethylene terephthalate using a micro-sized MgO-incorporated SiO2 catalyst to produce highly pure bis(2-hydroxyethyl) terephthalate in high yield[J]. Chemical Engineering Journal, 2024, 499: 155865.
doi: 10.1016/j.cej.2024.155865
[28] LE N H, NGOC VAN T T, SHONG B, et al. Low-temperature glycolysis of polyethylene terephthalate[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(51): 17261-17273.
[29] YUN L X, WU H, SHEN Z G, et al. Ultrasmall CeO2 nanoparticles with rich oxygen defects as novel catalysts for efficient glycolysis of polyethylene terephthalate[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(16): 5278-5287.
[30] WU J Y, YANG F, SHI D D, et al. Converting waste polyethylene terephthalate to high value monomers by synergistic catalysts[J]. ChemSusChem, 2025, 18(4): e202401922.
doi: 10.1002/cssc.v18.4
[31] ABEDSOLTAN H. A focused review on recycling and hydrolysis techniques of polyethylene terephthalate[J]. Polymer Engineering & Science, 2023, 63(9): 2651-2674.
doi: 10.1002/pen.v63.9
[32] SHOJAEI B, ABTAHI M, NAJAFI M. Chemical recycling ofPET: a stepping-stone toward sustainabi-lity[J]. Polymers for Advanced Technologies, 2020, 31(12): 2912-2938.
doi: 10.1002/pat.v31.12
[33] PHAM D D, CHO J. Low-energy catalytic methanolysis of poly(ethyleneterephthalate)[J]. Green Chemistry, 2021, 23(1): 511-525.
doi: 10.1039/D0GC03536J
[34] PEREIRA P, SAVAGE P E, PESTER C W. Neutral hydrolysis of post-consumer polyethylene terephthalate waste in different phases[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(18): 7203-7209.
[35] SABDE S, YADAV G D, NARAYAN R. Conversion of waste into wealth in chemical recycling of polymers: hydrolytic depolymerization of polyethylene terephthalate into terephthalic acid and ethylene glycol using phase transfer catalysis[J]. Journal of Cleaner Production, 2023, 420: 138312.
doi: 10.1016/j.jclepro.2023.138312
[36] SUN H Y, CHEN Z, ZHOU J L, et al. Recovery of high-quality terephthalic acid from waste polyester textiles via a neutral hydrolysis method[J]. Journal of Environmental Chemical Engineering, 2024, 12(3): 112558.
doi: 10.1016/j.jece.2024.112558
[37] FOROUZESHFAR F, ABEDSOLTAN H, COLEMAN M R, et al. Alkaline hydrolysis of poly (ethylene terephthalate) using 1, 8-diazabicyclo [5.4.0] undec-7-ene (DBU)[J]. Polymer Degradation and Stability, 2024, 225: 110814.
doi: 10.1016/j.polymdegradstab.2024.110814
[38] PAVLOPOULOU K E HR? ZOVÁ K, KAHOUSH M, et al. Textile recycling: efficient polyester recovery from polycotton blends using the heated high-ethanol alkaline aqueous process[J]. Polymers, 2024, 16(21): 3008.
doi: 10.3390/polym16213008
[39] QIN R, WANG Z Y, CAO Y Y, et al. Task-specific deep eutectic solvent for efficient dissolution and further accelerating alkaline hydrolysis of polyesters into their monomers[J]. ChemSusChem, 2025, 18(3): e202401470.
doi: 10.1002/cssc.v18.3
[40] YU H T, WANG Y, CHEN L, et al. Biobased dimethyl isosorbide as an efficient solvent for alkaline hydrolysis of waste polyethylene terephthalate to terephthalic acid[J]. Green Chemistry, 2023, 25(19): 7807-7816.
doi: 10.1039/D3GC02308G
[41] YANG W S, WANG J, JIAO L, et al. Easily recoverable and reusable p-toluenesulfonic acid for faster hydrolysis of waste polyethylene terephthalate[J]. Green Chemistry, 2022, 24(3): 1362-1372.
doi: 10.1039/D1GC04567A
[42] PENG Y T, YANG J, DENG C Q, et al. Acetolysis of waste polyethylene terephthalate for upcycling and life-cycle assessment study[J]. Nature Communications, 2023, 14(1): 3249.
doi: 10.1038/s41467-023-38998-1 pmid: 37277365
[43] ZIMMERMANN W. Biocatalytic recycling of polyethylene terephthalate plastic[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378(2176): 20190273.
[44] DISSANAYAKE L, JAYAKODY L N. Engineering microbes to bio-upcycle polyethylene terephthalate[J]. Frontiers in Bioengineering and Biotechnology, 2021, 9: 656465.
doi: 10.3389/fbioe.2021.656465
[45] SUI B B, WANG T, FANG J X, et al. Recent advances in the biodegradation of polyethylene terephthalate with cutinase-like enzymes[J]. Frontiers in Microbiology, 2023, 14: 1265139.
doi: 10.3389/fmicb.2023.1265139
[46] MAURYA A, BHATTACHARYA A, KHARE S K. Enzymatic remediation of polyethylene terephtha-late (PET)-based polymers for effective management of plastic wastes: an overview[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 602325.
doi: 10.3389/fbioe.2020.602325
[47] SHI L X, ZHU L L. Recent advances and challenges in enzymatic depolymerization and recycling of PET wastes[J]. Chembiochem, 2024, 25(2): e202300578.
doi: 10.1002/cbic.v25.2
[48] ZHENG M N, LI Y W, DONG W L, et al. Hydrolase-catalyzed depolymerization mechanism toward crystalline and amorphous polyethylene terephthalate[J]. ACS Sustainable Chemistry & Engineering, 2024, 12(27): 10252-10259.
[49] GUAJARDO C, ANDLER R. Challenges and perspectives in enzymatic polymer fragmentation: the case of rubber and polyethylene terephthalate[J]. Journal of Cleaner Production, 2024, 450: 141875.
doi: 10.1016/j.jclepro.2024.141875
[50] ARNAL G, ANGLADE J, GAVALDA S, et al. Assessment of four engineered PET degrading enzymes considering large-scale industrial applications[J]. ACS Catalysis, 2023, 13(20): 13156-13166.
doi: 10.1021/acscatal.3c02922 pmid: 37881793
[51] LU H Y, DIAZ D J, CZARNECKI N J, et al. Machine learning-aided engineering of hydrolases for PET depolymerization[J]. Nature, 2022, 604(7907): 662-667.
doi: 10.1038/s41586-022-04599-z
[52] ZHANG Z X, HUANG S M, CAI D, et al. Depolymerization of post-consumer PET bottles with engineered cutinase 1 from Thermobifida cellulosily-tica[J]. Green Chemistry, 2022, 24(15): 5998-6007.
doi: 10.1039/D2GC01834A
[53] ZHENG Y, LI Q B, LIU P, et al. Dynamic docking-assisted engineering of hydrolases for efficient PET depolymerization[J]. ACS Catalysis, 2024, 14(5): 3627-3639.
doi: 10.1021/acscatal.4c00400
[54] CUI Y L, CHEN Y C, LIU X Y, et al. Computational redesign of a PETase for plastic biodegradation under ambient condition by the GRAPE strategy[J]. ACS Catalysis, 2021, 11(3): 1340-1350.
doi: 10.1021/acscatal.0c05126
[55] BELL E L, SMITHSON R, KILBRIDE S, et al. Directed evolution of an efficient and thermostable PET depolymerase[J]. Nature Catalysis, 2022, 5(8): 673-681.
doi: 10.1038/s41929-022-00821-3
[1] SHI Sheng, WANG Yazhou, WANG Shuhua, PANG Mingke, LI Xin, ZHANG Meiling, GAO Chengyong. Preparation of fluorinated waterborne polyurethane from waste polyester fibers by alcoholysis [J]. Journal of Textile Research, 2025, 46(06): 8-16.
[2] BING Linhan, WANG Rui, WU Yuhang, LIU Botong, HUANG Hanjiang, WEI Jianfei. Preparation of PET-based carbon dots by pyrolysis and its application in PET flame retardancy [J]. Journal of Textile Research, 2024, 45(10): 1-8.
[3] ZHANG Yongfang, GUO Hong, SHI Sheng, YAN Zhifeng, HOU Wensheng. Degradation of polyester/cotton blended fabrics in hydrothermal system [J]. Journal of Textile Research, 2024, 45(04): 160-168.
[4] ZHANG Xiaocheng, ZHOU Yan, TIAN Weiguo, QIAO Xin, JIA Fengwei, XU Lili, ZHANG Jinming, ZHANG Jun. Rapid separation and content determination of fibers from waste cotton/polyester blended fabrics [J]. Journal of Textile Research, 2022, 43(07): 1-8.
[5] CHEN Long, ZHOU Zhe, ZHANG Jun, XU Shimei, NI Yanpeng. Research progress in chemical recycling of waste cotton and polyester textiles [J]. Journal of Textile Research, 2022, 43(05): 43-48.
[6] SHI Sheng, WANG Yan, LI Fei, TANG Jiandong, GAO Xiangyu, HOU Wensheng, GUO Hong, WANG Shuhua, JI Jiaqi. Efficient separation of polyester and cotton from waste blended fabrics with dilute oxalic acid solution [J]. Journal of Textile Research, 2022, 43(02): 140-148.
[7] GAO Qiang, WANG Xiao, GUO Yajie, CHEN Ru, WEI Ju. Preparation and performance of cotton based Ti3C2Tx oil-water separation membrane [J]. Journal of Textile Research, 2022, 43(01): 172-177.
[8] HAN Fei, LANG Chenhong, QIU Yiping. Research progress in resource recycling based on waste textiles [J]. Journal of Textile Research, 2022, 43(01): 96-105.
[9] YANG Xing, LI Qingzhou, WU Min, ZHOU Yongkai. Circular economy in European Union textile industry chain and key issues of waste textiles treatment [J]. Journal of Textile Research, 2022, 43(01): 106-112.
[10] DONG Shuang, KONG Yuying, GUAN Jinping, CHENG Xianwei, CHEN Guoqiang. Chemical separation and recycling of waste polyester/cotton blended military training uniforms [J]. Journal of Textile Research, 2022, 43(01): 178-185.
[11] LI Zhenzhen, ZHI Chao, YU Lingjie, ZHU Hai, DU Mingjuan. Preparation and properties of waste cotton regenerative aerogel/warp-knitted spacer fabric composites [J]. Journal of Textile Research, 2022, 43(01): 167-171.
[12] TU Li, MENG Jiaguang, LI Xin, LI Juanzi. Composition analysis and stripping process of waste wool/silk/cotton blended fabric [J]. Journal of Textile Research, 2019, 40(11): 75-80.
[13] CHEN Xin, ZHANG Jialin, WANG Jidong, LI Xiaoqiang, GE Mingqiao. Decolorization of polyester alcoholysis solution by electrocoagulation [J]. Journal of Textile Research, 2019, 40(10): 98-104.
[14] . Sound insulation properties of waste polyester fabric/chlorinated polyethylene composites [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(08): 50-54.
[15] RONG Zhen, CHEN Yun, TANG Shi-Jun. Components separation of wastes polyester-cotton blended textile with ionic liquid dessolving method [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(8): 24-29.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!