Journal of Textile Research ›› 2025, Vol. 46 ›› Issue (05): 41-48.doi: 10.13475/j.fzxb.20250104302
• Invited Column: Intelligent Fiber and Fabric Device • Previous Articles Next Articles
CHEN Xiao1, ZHAO Jizhong1,2, DONG Kai1,2(
)
CLC Number:
| [1] | ZHAO Z, HU Y. Textile triboelectric nanogenerator: future smart wearable energy-integration technology[J]. Advanced Materials Technologies, 2024. DOI: 10.1002/admt.202302012. |
| [2] | CHENG T, SHAO J, WANG Z L. Triboelectric nanogenerators[J]. Nature Reviews Methods Primers, 2023. DOI: 10.1038/s43586-023-00230-1. |
| [3] | 赵继忠, 陈枭, 董凯. 机电转化纤维及自供能可穿戴纺织器件[J]. 科学通报, 2024. DOI: 10.1360/tb-2024-0647. |
| ZHAO Jizhong, CHEN Xiao, DONG Kai. Mechano-electric conversion fiber and self-powered wearable textile devices[J]. Chinese Science Bulletin, 2024. DOI: 10.1360/tb-2024-0647. | |
| [4] | 董凯, 吕天梅, 盛非凡, 等. 面向个性化健康医疗的智能纺织品研究进展[J]. 纺织学报, 2024, 45(1):240-249. |
| DONG Kai, LÜ Tianmei, SHENG Feifan, et al. Advances in smart textiles oriented to personalized healthcare[J]. Journal of Textile Research, 2024, 45(1):240-249. | |
| [5] | SUN J, CHOI H, CHA S, et al. Highly enhanced triboelectric performance from increased dielectric constant induced by ionic and interfacial polarization for chitosan based multi-modal sensing system[J]. Advanced Functional Materials, 2021. DOI:10.1002/adfm.202109139. |
| [6] | ZHANG P, HUANG H, WANG X, et al. Anti-moisture, anti-bacterial cellulosic triboelectric materials enabled by hydroxyl coordination effect[J]. Nano Energy, 2024. DOI:10.1016/j.nanoen.2024.109472. |
| [7] | CHEN Y, LING Y, YIN R. Fiber/yarn-based triboelectric nanogenerators (TENGs): fabrication strategy, structure, and application[J]. Sensors (Basel), 2022. DOI: 10.3390/s22249716. |
| [8] | LIAO H, NA J, ZHOU W, et al. Enhancing energy harvesting performance and sustainability of cellulose-based triboelectric nanogenerators: strategies for performance enhancement[J]. Nano Energy, 2023. DOI: 10.1016/j.nanoen.2023.108769. |
| [9] | ZHANG Y, LI C, WEI C, et al. An intelligent self-powered life jacket system integrating multiple triboelectric fiber sensors for drowning rescue[J]. InfoMat, 2024. DOI: 10.1002/inf2.12534. |
| [10] | JEON S B, KIM W G, PARK S J, et al. Self-powered wearable touchpad composed of all commercial fabrics utilizing a crossline array of triboelectric generators[J]. Nano Energy, 2019. DOI:10.1016/j.nanoen.2019.103994. |
| [11] | SUN D J, SONG W Z, LI C L, et al. High-voltage direct current triboelectric nanogenerator based on charge pump and air ionization for electrospinning[J]. Nano Energy, 2022. DOI:10.1016/j.nanoen.2022.107599. |
| [12] | WANG S, TIAN M, HU S, et al. Hierarchical nanofibrous mat via water-assisted electrospinning for self-powered ultrasensitive vibration sensors[J]. Nano Energy, 2022. DOI: 10.1016/j.nanoen.2022.107149. |
| [13] | AKRAM W, CHEN Q, XIA G, et al. A review of single electrode triboelectric nanogenerators[J]. Nano Energy, 2023. DOI:10.1016/j.nanoen.2022.108043. |
| [14] | XIONG Y, LUO L, YANG J, et al. Scalable spinning, winding, and knitting graphene textile TENG for energy harvesting and human motion recognition[J]. Nano Energy, 2023. DOI: 10.1016/j.nanoen.2022.108137. |
| [15] | LI X, XU L, LIN P, et al. Three-dimensional chiral networks of triboelectric nanogenerators inspired by metamaterial's structure[J]. Energy & Environmental Science, 2023, 16(7): 3040-3052. |
| [16] | XI F, PANG Y, LI W, et al. Universal power management strategy for triboelectric nanogenerator[J]. Nano Energy, 2017, 37: 168-176. |
| [17] | ZOU H, ZHANG Y, GUO L, et al. Quantifying the triboelectric series[J]. Nat Commun, 2019. DOI:10.1038/s41467-019-09461-x. |
| [18] | LIU D, ZHOU L, CUI S, et al. Standardized measurement of dielectric materials' intrinsic triboelectric charge density through the suppression of air breakdown[J]. Nat Commun, 2022. DOI:10.1038/s41467-022-33766-z. |
| [19] | SHI X, SI W, ZHU J, et al. Boosting the electrical performance of PLA-based triboelectric nanogenerators for sustainable power sources and self-powered sensing[J]. Small, 2024. DOI: 10.1002/smll.202307620. |
| [20] | WANG F, WANG S, LIU Y, et al. Improved electrical output performance of cellulose-based triboelectric nanogenerators enabled by negative triboelectric materials[J]. Small, 2024. DOI: 10.1002/smll.202308195. |
| [21] | NIE S, FU Q, LIN X, et al. Enhanced performance of a cellulose nanofibrils-based triboelectric nanogenerator by tuning the surface polarizability and hydrophobicity[J]. Chemical Engineering Journal, 2021. DOI:10.1016/j.cej.2020.126512. |
| [22] | ROY S, KO H U, MAJI P K, et al. Large amplification of triboelectric property by allicin to develop high performance cellulosic triboelectric nanogenerator[J]. Chemical Engineering Journal, 2020. DOI: 10.1016/j.cej.2019.123723. |
| [23] | VU D L, LE C D, VO C P, et al. Surface polarity tuning through epitaxial growth on polyvinylidene fluoride membranes for enhanced performance of liquid-solid triboelectric nanogenerator[J]. Composites Part B: Engineering, 2021. DOI: 10.1016/j.compositesb.2021.109135. |
| [24] | ZHENG T, LI G, ZHANG L, et al. A waterproof, breathable nitrocellulose-based triboelectric nanogenerator for human-machine interaction[J]. Nano Energy, 2023. DOI:10.1016/j.nanoen.2023.108649. |
| [25] | HE Y, WANG H, SHA Z, et al. Enhancing output performance of PVDF-HFP fiber-based nanogenerator by hybridizing silver nanowires and perovskite oxide nanocrystals[J]. Nano Energy, 2022. DOI:10.1016/j.nanoen.2022.107343. |
| [26] | DOMINGOS I, SAADI Z, SADANANDAN K S, et al. Printed graphene electrodes for textile-embedded triboelectric nanogenerators for biomechanical sensing[J]. Nano Energy, 2023. DOI: 10.1016/j.nanoen.2023.108688. |
| [27] | SALAUDDIN M, RANA S M S, RAHMAN M T, et al. Fabric-assisted MXene/silicone nanocomposite-based triboelectric nanogenerators for self-powered sensors and wearable electronics[J]. Advanced Functional Materials, 2021. DOI: 10.1002/adfm.202107143. |
| [28] | NING C, DONG K, CHENG R, et al. Flexible and stretchable fiber-shaped triboelectric nanogenerators for biomechanical monitoring and human-interactive sensing[J]. Advanced Functional Materials, 2020. DOI: 10.1002/adfm.202006679. |
| [29] | TIAN Z, HE J, CHEN X, et al. Core-shell coaxially structured triboelectric nanogenerator for energy harvesting and motion sensing[J]. RSC Advances, 2018, 8(6): 2950-2957. |
| [30] | TIAN Z, HE J, CHEN X, et al. Performance-boosted triboelectric textile for harvesting human motion energy[J]. Nano Energy, 2017, 39: 562-570. |
| [31] | ZHOU M, XU F, MA L, et al. Continuously fabricated nano/micro aligned fiber based waterproof and breathable fabric triboelectric nanogenerators for self-powered sensing systems[J]. Nano Energy, 2022. DOI: 10.1016/j.nanoen.2022.107885. |
| [32] | DONG S, XU F, SHENG Y, et al. Seamlessly knitted stretchable comfortable textile triboelectric nanogenerators for E-textile power sources[J]. Nano Energy, 2020. DOI:10.1016/j.nanoen.2020.105327. |
| [33] | DONG K, PENG X, AN J, et al. Shape adaptable and highly resilient 3D braided triboelectric nanogenerators as e-textiles for power and sensing[J]. Nat Commun, 2020. DOI: 10.1038/s41467-020-16642-6. |
| [34] | CHEN C, CHEN L, WU Z, et al. 3D double-faced interlock fabric triboelectric nanogenerator for bio-motion energy harvesting and as self-powered stretching and 3D tactile sensors[J]. Materials Today, 2020, 32: 84-93. |
| [35] | SHEN Y, CHEN C, CHEN L, et al. Mass-production of biomimetic fur knitted triboelectric fabric for smart home and healthcare[J]. Nano Energy, 2024. DOI: 10.1016/j.nanoen.2024.109510. |
| [36] | WU R, LIU S, LIN Z, et al. Industrial fabrication of 3D braided stretchable hierarchical interlocked fancy-yarn triboelectric nanogenerator for self-powered smart fitness system[J]. Advanced Energy Materials, 2022. DOI: 10.1002/aenm.202201288. |
| [37] | GAO Y, LIU J, ZHOU L, et al. Achieving high performance triboelectric nanogenerators simultaneously with high-voltage and high-charge energy cycle[J]. Energy & Environmental Science, 2024, 17(22): 8734-8744. |
| [38] | ZHANG L A, LIU S, WEN J, et al. Collecting the space-distributed Maxwell's displacement current for ultrahigh electrical density of TENG through a 3D fractal structure design[J]. Energy & Environmental Science, 2023, 16(9): 3781-3791. |
| [39] | BEN OUANES M A, SAMAALI H, et al. A new type of triboelectric nanogenerator with self-actuated series-to-parallel electrical interface based on self-synchronized mechanical switches for exponential charge accumulation in a capacitor[J]. Nano Energy, 2019, 62: 465-474. |
| [40] |
CHENG G, LIN Z H, LIN L, et al. Pulsed nanogenerator with huge instantaneous output power density[J]. ACS Nano, 2013, 7(8): 7383-7391.
doi: 10.1021/nn403151t pmid: 23883160 |
| [41] | ZHOU H, LIU G, BU T, et al. Autonomous cantilever buck switch for ultra-efficient power management of triboelectric nanogenerator[J]. Applied Energy, 2024. DOI: 10.1016/j.apenergy.2023.122475. |
| [42] | WU H, LI H, WANG X. A high-stability triboelectric nanogenerator with mechanical transmission module and efficient power management system[J]. Journal of Micromechanics and Microengineering, 2020. DOI: 10.1088/1361-6439/abb754. |
| [43] | PU X, LIU M, LI L, et al. Efficient charging of Li-ion batteries with pulsed output current of triboelectric nanogenerators[J]. Advanced Science (Weinh), 2016. DOI: 10.1002/advs.201500255. |
| [44] |
ZHANG B, ZHANG C, YANG O, et al. Self-powered seawater electrolysis based on a triboelectric nanogenerator for hydrogen production[J]. ACS Nano, 2022, 16(9): 15286-15296.
doi: 10.1021/acsnano.2c06701 pmid: 36098463 |
| [45] | WANG Z, TANG Q, SHAN C, et al. Giant performance improvement of triboelectric nanogenerator systems achieved by matched inductor design[J]. Energy & Environmental Science, 2021, 14(12): 6627-6637. |
| [46] | LI B, YANG Y, CHEN J, et al. Gas discharge tubes for significantly boosting the instantaneous current and active power of load driven by triboelectric nanogenerators[J]. Nano Energy, 2023. DOI: 10.1016/j.nanoen.2023.108200. |
| [47] | ALNEAMY A, SAMAALI H, NAJAR F. Electrostatic energy harvesting of kinetic motions using a MEMS device and a Bennet doubler conditioning circuit[J]. IEEE Instrumentation & Measurement Magazine, 2023, 26(3): 14-20. |
| [48] | GHAFFARINEJAD A, HASANI J Y, HINCHET R, et al. A conditioning circuit with exponential enhancement of output energy for triboelectric nanogenerator[J]. Nano Energy, 2018, 51: 173-184. |
| [49] | HARMON W, BAMGBOJE D, GUO H Y, et al. Self-driven power management system for triboelectric nanogenerators[J]. Nano Energy, 2020. DOI: 10.1016/j.nanoen.2020.104642. |
| [50] | LI X, GAO Y, HU Y, et al. Efficient energy transport from triboelectric nanogenerators to lithium-ion batteries via releasing electrostatic energy instantaneously[J]. Chemical Engineering Journal, 2024. DOI: 10.1016/j.cej.2024.150449. |
| [51] | XIA K, TIAN Y, FU J, et al. Transparent and stretchable high-output triboelectric nanogenerator for high-efficiency self-charging energy storage systems[J]. Nano Energy, 2021. DOI: 10.1016/j.nanoen.2021.106210. |
| [52] | TAO R, MAO Y, GU C, et al. Integrating all-yarn-based triboelectric nanogenerator/supercapacitor for energy harvesting, storage and sensing[J]. Chemical Engineering Journal, 2024. DOI: 10.1016/j.cej.2024.154358. |
| [53] | ZHAO M, NIE J, LI H, et al. High-frequency supercapacitors based on carbonized melamine foam as energy storage devices for triboelectric nanog-enerators[J]. Nano Energy, 2019, 55: 447-453. |
| [1] | YU Mengfei, GAO Wenli, REN Jing, CAO Leitao, PENG Ruoxuan, LING Shengjie. Preparation and properties of core-sheath fiber for triboelectric nanogenerator [J]. Journal of Textile Research, 2025, 46(05): 1-9. |
| [2] | YAN Jing, WANG Yaqian, LIU Jingjing, LI Haoyi, YANG Weimin, KANG Weimin, ZHUANG Xupin, CHENG Bowen. Preparation of melt-electrospun filament yarns and their applications in triboelectric nanogenerators [J]. Journal of Textile Research, 2025, 46(05): 23-29. |
| [3] | LIU Ye, WANG Junsheng, JIN Xing. Research progress in intelligent textiles for firefighter's personal protective equipment [J]. Journal of Textile Research, 2025, 46(05): 105-115. |
| [4] | LIANG Wenyu, JI Dongxiao, QIN Xiaohong. Preparation of micro-nanofiber core-spun yarn and its electroluminescent properties [J]. Journal of Textile Research, 2025, 46(01): 42-51. |
| [5] | HU Anzhong, WANG Chengcheng, ZHONG Ziheng, ZHANG Liping, FU Shaohai. Preparation and properties of fast response thermochromic textiles doped with boron nitride nanosheets [J]. Journal of Textile Research, 2023, 44(05): 164-170. |
| [6] | YANG Mengfan, WANG Chaoxia, YIN Yunjie, QIU Hua. Printing and photochromic properties of spiropyran microcapsules on cotton fabrics [J]. Journal of Textile Research, 2022, 43(09): 137-142. |
| [7] | LIANG Jiahao, WU Yingzhu, LIU Haidong, HUANG Meilin, CAI Ruiyan, ZHOU Junjian, XIE Quanpei. Preparation and properties of humidity-sensitive polyurethane fibers with surface electrostatic implantation and adhesion of grapheme [J]. Journal of Textile Research, 2021, 42(06): 63-70. |
| [8] | WANG Hang, WANG Bingxin, NING Xin, QU Lijun, TIAN Mingwei. Research progress in conductive inks for inkjet printing and its application for intelligent electronic textiles [J]. Journal of Textile Research, 2021, 42(06): 189-197. |
| [9] | JIANG Zhaohui, LI Yonggui, YANG Zitao, GUO Zengge, ZHANG Zhanqi, QI Yuanzhang, JIN Jian. Research progress in graphene/polymer composite fibers and textiles [J]. Journal of Textile Research, 2021, 42(03): 175-180. |
| [10] | YIN Shiyong, BAO Jinsong, TANG Shixi, YANG Yun. Modeling method of cyber physical production system for ring spinning [J]. Journal of Textile Research, 2021, 42(02): 65-73. |
| [11] | YANG Yuchen, QIN Xiaohong, YU Jianyong. Research progress of transforming electrospun nanofibers into functional yarns [J]. Journal of Textile Research, 2021, 42(01): 1-9. |
| [12] | MA Liyun, WU Ronghui, LIU Sai, ZHANG Yuze, WANG Jun. Preparation and electrical properties of triboelectric nanogenerator based on wrapped composite yarn [J]. Journal of Textile Research, 2021, 42(01): 53-58. |
| [13] | XIAO Yuan, WANG Pan, ZHANG Wei, ZHANG Chengkun. Research on forming process of bulge at start of jet printing conductive circuit on fabric surfaces [J]. Journal of Textile Research, 2020, 41(12): 81-86. |
| [14] | WANG Jilong, LIU Yan, JING Yuanyuan, XU Qingli, QIAN Xiangyu, ZHANG Yihong, ZHANG Kun. Advances in fiber-based wearable electronic devices [J]. Journal of Textile Research, 2020, 41(12): 157-165. |
| [15] | CHEN Hui, WANG Xi, DING Xin, LI Qiao. Design of temperature-sensitive garment consisting of full fabric sensing networks [J]. Journal of Textile Research, 2020, 41(03): 118-123. |
|
||