Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (06): 63-70.doi: 10.13475/j.fzxb.20200605808

• Fiber Materials • Previous Articles     Next Articles

Preparation and properties of humidity-sensitive polyurethane fibers with surface electrostatic implantation and adhesion of grapheme

LIANG Jiahao1, WU Yingzhu1(), LIU Haidong2, HUANG Meilin1, CAI Ruiyan2, ZHOU Junjian3, XIE Quanpei1   

  1. 1. College of Textile Materials and Engineering, Wuyi University, Jiangmen, Guangdong 529020, China
    2. Guangdong Bobaolong Co., Ltd., Jieyang, Guangdong 515300, China
    3. Zhongshan Well Dyeing Factory Limited, Zhongshan, Guangdong 528445, China
  • Received:2020-06-19 Revised:2021-03-01 Online:2021-06-15 Published:2021-06-28

Abstract:

In order to achieve good performance, eco-friendliness and suitability for weaving humidity sensitive fiber, surface electrostatic implantation method was adopted in this research. Pieces of graphene were accelerated in electrostatic field and implanted rapidly onto the surface of melting polyurethane fiber, adhesion of graphene on the fiber surface was achieved after rapid roll pressing, leading to a wool scale-like fiber surface. The preparation process of the fiber was optimized, and the structure and properties of the fiber were characterized. The optimal process was found to be electrode plate distance 15 cm, preparation voltage 45 kV, preparation temperature 50 ℃, and the implantation time 15 s. Research results show that when the graphene content is 4.1%, the conductivity is 7.0 S/m, the breaking strength and elongation at break are 94.9 MPa and 91.5%, respectively, that the humidity sensitive fiber has good sensitive stability, and good humidity sensitivity in high humidity environment, and that response time and the recovery time in low humidity environment are only 16 s and 26 s respectively. The humidity sensitive fiber could be widely applied in corrosive gas environment and flexible intelligent electronic textiles.

Key words: graphene, polyurethane fiber, humidity sensitive fiber, electrostatic implanted, humidity sensing, intelligent textile

Tab. 1

Experimental parameters"

A
制备温度/℃
B
外加电压/kV
C
植入时间/s
45 30 5
50 35 10
55 40 15
60 45 20

Fig.1

SEM images of GR-based humidity sensitive fiber.(a) Blank fiber;(b) Implantation without pressing treatment;(c) Pressing treatment after implantation"

Tab.2

orthogonal test results"

试验
编号
A B C 石墨烯植
入量/%
1 2 3 4 5
1# 1 1 1 1 1 1.08
2# 2 1 2 2 2 2.33
3# 3 1 3 3 3 3.51
4# 4 1 4 4 4 3.90
5# 1 2 2 3 4 2.73
6# 2 2 1 4 3 1.16
7# 3 2 4 1 2 4.00
8# 4 2 3 2 1 4.03
9# 1 3 3 4 2 4.06
10# 2 3 4 3 1 4.28
11# 3 3 1 2 4 1.74
12# 4 3 2 1 3 3.28
13# 1 4 4 2 3 4.38
14# 2 4 3 1 4 4.18
15# 3 4 2 4 1 3.52
16# 4 4 1 3 2 2.76
K1j 12.25 10.82 6.74 12.54 12.91
K2j 11.95 11.92 11.86 12.48 13.15
K3j 12.77 13.36 15.78 13.28 12.33
K4j 13.97 14.84 16.56 12.64 12.55
Dj 0.505 1.005 2.455 0.200 0.205

Tab.3

Analysis of variance of experimental results"

方差来源 自由度 均方和值 F 显著性
A 3 0.59 2.95
B 3 2.29 11.45 *
C 3 15.15 75.75 *
e 6 0.20

Fig.2

Conductivity and graphene content of fiber prepared under different implantation time 1-45 ℃、30 kV;2-50 ℃、30 kV;3-55 ℃、30 kV;4-60 ℃、30 kV;5-45 ℃、35 kV;6-50 ℃、35 kV;7-55 ℃、35 kV;8-60 ℃、35 kV;9-45 ℃、40 kV;10-50 ℃、40 kV;11-55 ℃、40 kV;12-60 ℃、40 kV; 13-45 ℃、45 kV;14-50 ℃、40 kV;15-55 ℃、45 kV; 16-60 ℃、 45 kV。"

Tab.4

Conductivity and graphene content ratio of GR-based composite fiber prepared by physical blending method"

电导率/(S·m-1) 石墨烯植入量/% 来源
小于4.3×10-4 4 自制物理共混对照样
5.7×10-4 5 文献[14]
0.36 20 文献[5]
1.77 25 文献[15]
7.0 4.1 本文工作

Fig.3

Water resistance test of GR-based humidity sensitive fiber at different applied voltage"

Fig.4

Effect of preparation temperature on breaking strength and elongation at break of fiber"

Fig.5

Resistance variation of GR-based humidity sensitive fiber under different humidity conditions"

Fig.6

Fitting curve of relative humidity and resistance of GR-based humidity sensitive fiber"

Fig.7

Resistance response and recovery curves of GR-based humidity sensitive fiber in different relative humidity"

Fig.8

Resistance repeated curves of GR-based humidity sensitive fiber in different relative humidity"

Tab.5

Comparison of response recovery time between GR-based humidity sensitive fiber and other GR-based humidity sensors"

传感器类型 响应时
间/s
恢复时
间/s
相对湿度测
量范围/%
来源
GR/PPy薄膜 12 53 33~90 [16]
RGO薄膜 28 48 10~90 [17]
GO薄膜 45 24 11~90 [18]
石墨烯湿敏纤维 60 38 0~97 本文工作

Fig.9

Environmental stability of GR-based humidity sensitive fiber"

Fig.10

Variation of bonded graphene under different relative humidity conditions"

[1] BI Hengchang, YIN Kuibo, XIE Xiao, et al. Ultrahigh humidity sensitivity of graphene oxide[J]. Scientific Reports, 2013, 3(1):1-7.
[2] ZHANG Dongzhi, CHANG Hongyan, LI Peng, et al. Fabrication and characterization of an ultrasensitive humidity sensor based on metal oxide/graphene hybrid nanocomposite[J]. Sensors and Actuators B: Chemical, 2016, 225:233-240.
doi: 10.1016/j.snb.2015.11.024
[3] YANG Zihang, ZHAI Zirui, SONG Zeming, et al. Conductive and elastic 3D helical fibers for use in washable and wearable electronics[J]. Advanced Materials, 2020, 32:1907495.
doi: 10.1002/adma.v32.10
[4] 陈衍夏, 肖红艳, 施亦东, 等. 金属纤维材料的改性及应用新进展[J]. 产业用纺织品, 2010(10):1-7.
CHEN Yanxia, XIAO Hongyan, SHI Yidong, et al. Application advances and modification of metal fiber materials[J]. Technical Textiles, 2010(10):1-7.
[5] HUANG Chien-Lin, LOU Ching-Wen, LIU Chi-Fan, et al. Polypropylene/graphene and polypropylene/carbon fiber conductive composites: mechanical, crystallization and electromagnetic properties[J]. Applied Sciences, 2015, 5(4):1196-1210.
doi: 10.3390/app5041196
[6] 王双成, 孙海波, 许日鹏, 等. 生物质石墨烯粘胶纤维的制备及性能分析[J]. 人造纤维, 2018, 48(5):12-15.
WANG Shuangcheng, SUN Haibo, XU Ripeng, et al. Preparation and performance analysis of biomass graphene viscose fiber[J]. Artificial Fibre, 2018, 48(5):12-15.
[7] 许日鹏, 宋现芬, 王双成, 等. 生物质石墨烯改性海藻纤维的制备与性能分析[J]. 人造纤维, 2019, 49(5):15-19,23.
XU Ripeng, SONG Xianfen, WANG Shuangcheng, et al. Preparation and performance analysis of biomass graphene-modified seaweed fibers[J]. Artificial Fibre. 2019, 49(5):15-19,23.
[8] 陈建康, 江奇, 陈姿, 等. 静电纺丝电纺聚丙烯腈纤维及其在电化学超级电容器中的应用研究进展[J]. 功能材料, 2017, 48(2):2026-2032.
CHEN Jiankang, JIANG Qi, CHEN Zi, et al. Research progress on preparation of polyacrylonitrile fiber by electrostatic spinning method and its application in electrochemical supercapacitor[J]. Journal of Functional Materials, 2017, 48(2):2026-2032.
[9] ZHAO Yahong, NIU Changmei, GONG Jiahuan, et al. Construction and biocompatibility in vitro evaluation of electrospun- graphene/silk fibroin nanofilms[J]. Chinese Journal of Reparative & Reconstructive Surgery, 2017, 31 (9):1119-1126.
[10] 刘艺, 王华. 碳纤维表面化学镀铜工艺优化研究[J]. 铸造技术, 2018, 39(7):1607-1611.
LIU Yi, WANG Hua. Optimization of chemical copper- plating process on carbon fiber surface[J]. Foundry Technology, 2018, 39(7):1607-1611.
[11] TAKESHITA Toshihiro, YOSHIDA Manabu, TAKEI Yusuke, et al. Relationship between contact pressure and motion artifacts in ECG measurement with electrostatic flocked electrodes fabricated on textile[J]. Scientific Reports, 2019, 9:5897.
doi: 10.1038/s41598-019-42027-x pmid: 30976016
[12] LI Xiaoyan, WANG Jun, WANG Kangkang, et al. Three-dimensional stretchable fabric-based electrode for supercapacitors prepared by electrostatic flocking[J]. Chemical Engineering Journal, 2020, 390:124442.
doi: 10.1016/j.cej.2020.124442
[13] 杨书珍. 静电植绒特种纺织面料的研究[D]. 上海: 东华大学, 2007:29-33.
YANG Shuzhen. Study on electrostatic flocking special textile fabrics[D]. Shanghai: Donghua University, 2017:29-33.
[14] 凌良仲. 石墨烯/PET复合导电纤维的制备与性能研究[D]. 天津: 天津工业大学, 2017:31.
LING Liangzhong. Preparation and properties of graphene/PET composite conductive fiber[D]. Tianjin: Tiangong University, 2017:31.
[15] 迟淑丽, 田明伟, 曲丽君. 石墨烯纤维素复合纤维制备及导电导热性能研究[J]. 成都纺织高等专科学校学报, 2017, 34(2):22-25.
CHI Shuli, TIAN Mingwei, QU Lijun. Study on preparation and conductivity of graphene-cellulose composite fiber[J]. Journal of Chengdu Textile College, 2017, 34(2):22-25.
[16] LIN Wang-De, CHANG Hsiu-Mei, WU Ren-Jang. Applied novel sensing material graphene/polypyrrole for humidity sensor[J]. Sensors and Actuators B: Chemical, 2013, 181:326-331.
doi: 10.1016/j.snb.2013.02.017
[17] SU Pi-Guey, CHIOU Chuang-Fu. Electrical and humidity-sensing properties of reduced graphene oxide thin film fabricated by layer-by-layer with covalent anchoring on flexible substrate[J]. Sensors and Actuators B: Chemical, 2014, 200:9-18.
doi: 10.1016/j.snb.2014.04.035
[18] 姚尧. 氧化石墨烯的湿敏特性及其在微纳湿度传感器上的应用[D]. 成都: 西南交通大学, 2013,90-93.
YAO Yao. The humidity sensing properties of graphene oxide and its application in micro/nano humidity sensors[D]. Chengdu: Southwest Jiaotong University, 2013:90-93.
[19] CHEN Mengchu, HSU Chengliang, HSUEH Tingjen, et al. Fabrication of humidity sensor based on bilayer graphene[J]. IEEE Electron Device Letters, 2014, 35(5):590-592.
doi: 10.1109/LED.55
[1] WANG Hang, WANG Bingxin, NING Xin, QU Lijun, TIAN Mingwei. Research progress in conductive inks for inkjet printing and its application for intelligent electronic textiles [J]. Journal of Textile Research, 2021, 42(06): 189-197.
[2] TANG Jian, YAN Tao, PAN Zhijuan. Research progress of flexible strain sensors based on conductive composite fibers [J]. Journal of Textile Research, 2021, 42(05): 168-177.
[3] JIANG Zhaohui, LI Yonggui, YANG Zitao, GUO Zengge, ZHANG Zhanqi, QI Yuanzhang, JIN Jian. Research progress in graphene/polymer composite fibers and textiles [J]. Journal of Textile Research, 2021, 42(03): 175-180.
[4] YIN Shiyong, BAO Jinsong, TANG Shixi, YANG Yun. Modeling method of cyber physical production system for ring spinning [J]. Journal of Textile Research, 2021, 42(02): 65-73.
[5] LOU Yaya, WANG Jing, DONG Yanchao, WANG Chunmei. Preparation and decolorization of rayon based zeoliticimidazolate framework functional material [J]. Journal of Textile Research, 2021, 42(02): 142-147.
[6] HU Jing, ZHANG Kaiwei, LI Ranran, LIN Jinyou, LIU Yuqing. Preparation of flax layered nano-cellulose and properties of its reinforced thermoelectric composites [J]. Journal of Textile Research, 2021, 42(02): 47-52.
[7] MA Liyun, WU Ronghui, LIU Sai, ZHANG Yuze, WANG Jun. Preparation and electrical properties of triboelectric nanogenerator based on wrapped composite yarn [J]. Journal of Textile Research, 2021, 42(01): 53-58.
[8] YANG Yuchen, QIN Xiaohong, YU Jianyong. Research progress of transforming electrospun nanofibers into functional yarns [J]. Journal of Textile Research, 2021, 42(01): 1-9.
[9] WANG Jilong, LIU Yan, JING Yuanyuan, XU Qingli, QIAN Xiangyu, ZHANG Yihong, ZHANG Kun. Advances in fiber-based wearable electronic devices [J]. Journal of Textile Research, 2020, 41(12): 157-165.
[10] XIAO Yuan, WANG Pan, ZHANG Wei, ZHANG Chengkun. Research on forming process of bulge at start of jet printing conductive circuit on fabric surfaces [J]. Journal of Textile Research, 2020, 41(12): 81-86.
[11] MENG Jing, GAO Shan, LU Yehu. Investigation on factors influencing thermal protection of composite flame retardant fabrics treated by graphene aerogel [J]. Journal of Textile Research, 2020, 41(11): 116-121.
[12] LI Liang, LIU Jingfang, HU Zedong, GENG Changjun, LIU Rangtong. Graphene oxide loading on polyester fabrics and antistatic properties [J]. Journal of Textile Research, 2020, 41(09): 102-107.
[13] PANG Yali, MENG Jiayi, LI Xin, ZHANG Qun, CHEN Yankun. Preparation of graphene fibers by wet spinning and fiber characterization [J]. Journal of Textile Research, 2020, 41(09): 1-7.
[14] ZHAO Zhiqi, LI Qiujin, SUN Yuejing, GONG Jixian, LI Zheng, ZHANG Jianfei. Application of magnetic-graphene oxide/poly(allylamine hydrochloride) microcapsules for adsorption of dyes [J]. Journal of Textile Research, 2020, 41(07): 109-116.
[15] WANG Shubo, QIN Xiangpu, SHI Lei, ZHUANG Xupin, LI Zhenhuan. Preparation and properties of proton exchange membrane made from graphene oxide quantum dots/polyacrylonitrile nanofiber composites [J]. Journal of Textile Research, 2020, 41(06): 8-13.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!