Journal of Textile Research ›› 2025, Vol. 46 ›› Issue (06): 45-55.doi: 10.13475/j.fzxb.20241104802
• Column of Youth Scientists′Salon on New Fiber Materials and Green Textile Development • Previous Articles Next Articles
YU Houyong(
), HUANG Chengling, CHEN Yi, GAO Zhiying
CLC Number:
| [1] | HUANG C, YU H Y, ABDALKARIM S Y H, et al. A comprehensive investigation on cellulose nanocrystals with different crystal structures from cotton via an efficient route[J]. Carbohydrate Polymers, 2022. DOI: 10.1016/j.carbpol.2021.118766. |
| [2] | SHI X, WANG Z, LIU S, et al. Scalable production of carboxylated cellulose nanofibres using a green and recyclable solvent[J]. Nature Sustainability, 2024, 7(3): 315-325. |
| [3] | DROGUET B E, LIANG H L, FRKA-PETESIC B, et al. Large-scale fabrication of structurally coloured cellulose nanocrystal films and effect pigments[J]. Nature Materials, 2022, 21(3): 352-358. |
| [4] | DHALI K, GHASEMLOU M, DAVER F, et al. A review of nanocellulose as a new material towards environmental sustainability[J]. Science of the Total Environment, 2021. DOI: 10.1016/j.scitotenv.2021.145871. |
| [5] | DONG Y, JIA B, FU F, et al. Fabrication of hollow materials by fast pyrolysis of cellulose composite fibers with heterogeneous structures[J]. Angewandte Chemie International Edition, 2016, 55(43): 13504-13508. |
| [6] | CAPRIE Steering. A randomised, blinded, trial of clopidogrel versus aspirin in patients at risk of ischaemic events[J]. The Lancet, 1996, 348: 1329-1339. |
| [7] | SAYYED A J, DESHMUKH N A, PINJARI D V. A critical review of manufacturing processes used in regenerated cellulosic fibres: viscose, cellulose acetate, cuprammonium, LiCl/DMAc, ionic liquids, and NMMO based lyocell[J]. Cellulose, 2019, 26(5): 2913-2940. |
| [8] | WANG C, LI Y, YU H Y, et al. Continuous meter-scale wet-spinning of cornlike composite fibers for eco-friendly multifunctional electronics[J]. ACS Applied Materials & Interfaces, 2021, 13(34): 40953-40963. |
| [9] | HEINZE T, LIEBERT T. Unconventional methods in cellulose functionalization[J]. Progress in Polymer Science, 2001, 26(9): 1689-1762. |
| [10] | SWATLOSKI R P, SPEAR S K, HOLBREY J D, et al. Dissolution of celluose with ionic liquids[J]. Journal of the American Chemical Society, 2002, 124(18): 4974-4975. |
| [11] | SHEN H, SUN T, ZHOU J. Recent progress in regenerated cellulose fibers by wet spinning[J]. Macromolecular Materials and Engineering, 2023. DOI: 10.1002/mame.202300089. |
| [12] | WANG C, LIAO Y, YU H Y, et al. Homogeneous wet-spinning construction of skin-core structured PANI/cellulose conductive fibers for gas sensing and e-textile applications[J]. Carbohydrate Polymers, 2023. DOI:10.1016/j.carbpol.2023.121175. |
| [13] | CHEN Y, YU H Y, LI Y. Highly efficient and superfast cellulose dissolution by green chloride salts and its dissolution mechanism[J]. ACS Sustainable Chemistry and Engineering, 2020, 8(50): 18446-18454. |
| [14] | YANG M, CHEN Y, ABDALKARIM S Y H, et al. Efficient cellulose dissolution and derivatization enabled by oxalic/sulfuric acid for high-performance cellulose films as food packaging[J]. International Journal of Biological Macromolecules, 2024. DOI: 10.1016/j.ijbiomac.2024.133799. |
| [15] | WOLFS J, NICKISCH R, WANNER L, et al. Sustainable one-pot cellulose dissolution and derivatization via a tandem reaction in the DMSO/DBU/CO2 switchable solvent system[J]. Journal of the American Chemical Society, 2021, 143(44): 18693-18702. |
| [16] | FRANCISCO M, VAN Den Bruinhorst A, KROON M C. New natural and renewable low transition temperature mixtures (LTTMs): screening as solvents for lignocellulosic biomass processing[J]. Green Chemistry, 2012. DOI: 10.1039/C2GC35660K. |
| [17] | HUANG C, YU H Y, CHEN L, et al. A binder-free method to produce heat-sealable and transparent cellulose films driven by confined green solvent[J]. Green Chemistry, 2023. DOI: 10.1039/D2GC04655E. |
| [18] | HUANG C, GAO Y, CHEN Y, et al. Molecular dissociation of DTMS tailoring cellulose regeneration and hydrophobic modification for building highly transparent cellulose films[J]. Journal of Cleaner Production, 2024. DOI: 10.1016/j.jclepro.2024.142107. |
| [19] |
杨浩, 陈琪, 马新华, 等. 不同凝固浴对纤维素膜特征影响的研究[J]. 现代化工, 2020, 40(8): 162-172.
doi: 10.16606/j.cnki.issn0253-4320.2020.08.034 |
|
YANG Hao, CHEN Qi, MA Xinhua, et al. Effect of different coagualtion baths on characteristics of cellulose membrane[J]. Modern Chemical Industry, 2020, 40(8): 162-172.
doi: 10.16606/j.cnki.issn0253-4320.2020.08.034 |
|
| [20] |
CHEN Y, HUANG C, MIAO Z, et al. Tailoring hydronium ion driven dissociation-chemical cross-linking for superfast one-pot cellulose dissolution and derivatization to build robust cellulose films[J]. ACS Nano, 2024, 18(12): 8754-8767.
doi: 10.1021/acsnano.3c11335 pmid: 38456442 |
| [21] | ZHANG R, WU N, PAN F, et al. Scalable manufacturing of light, multifunctional cellulose nanofiber aerogel sphere with tunable microstructure for microwave absorption[J]. Carbon, 2023, 203: 181-190. |
| [22] | HUANG Z, ZHANG H, GUO M, et al. Large-scale preparation of electrically conducting cellulose nanofiber/carbon nanotube aerogels: ambient-dried, recyclable, and 3D-printable[J]. Carbon, 2022, 194: 23-33. |
| [23] |
CHEN Q, ZONG Z, GAO X, et al. Preparation and characterization of nanostarch-based green hard capsules reinforced by cellulose nanocrystals[J]. International Journal of Biological Macromolecules, 2021, 167: 1241-1247.
doi: 10.1016/j.ijbiomac.2020.11.078 pmid: 33189752 |
| [24] | 杨艳. 纳米纤维素及其衍生物作为药物缓释材料的研究[D]. 兰州: 兰州大学, 2014: 28-54. |
| YANG Yan. The study of nanocellulose nanocrystal and its derivatives as drug slow release material[D]. Lanzhou: Lanzhou University, 2014: 28-54. | |
| [25] | 张燕洁, 黄进, 马小舟. 多羧基纤维素纳米晶的制备与性能研究[J]. 中国造纸学报, 2019, 34(3): 6-12. |
| ZHANG Yanjie, HUANG Jin, MA Xiaozhou. Study on preparation and properties of multi-carboxyl cellulose nanocrystal[J]. Transactions of China Pulp and Paper, 2019, 34(3): 6-12. | |
| [26] | SVAGAN A J, BENJAMINS J W, AL-ANSARI Z, et al. Solid cellulose nanofiber based foams: towards facile design of sustained drug delivery systems[J]. Journal of Controlled Release, 2016, 244: 74-82. |
| [27] | YUNESSNIA Lehi A, SHAGHOLANI H, GHORBANI M, et al. Chitosan nanocapsule-mounted cellulose nanofibrils as nanoships for smart drug delivery systems and treatment of avian trichomoniasis[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 95: 290-299. |
| [28] | LI J, WANG Y, ZHANG L, et al. Nanocellulose/gelatin composite cryogels for controlled drug release[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(6): 6381-6389. |
| [29] | GAO Z, WANG C, DONG Y, et al. Freeze polymerization to modulate transverse-longitudinal polypyrrole growth on robust cellulose composite fibers for multi-scenario signal monitoring[J]. Chemical Engineering Journal, 2024. DOI: 10.1016/j.cej.2024.149785. |
| [30] | ZENG C, WANG H, BU F, et al. A regenerated cellulose fiber with high mechanical properties for temperature-adaptive thermal management[J]. International Journal of Biological Macromolecules, 2024. DOI: 10.1016/j.ijbiomac.2024.133550. |
| [31] | UDANGAWA W M R N, WILLARD C F, MANCINELLI C, et al. Coconut oil-cellulose beaded microfibers by coaxial electrospinning: an eco-model system to study thermoregulation of confined phase change materials[J]. Cellulose, 2019, 26(3): 1855-1868. |
| [32] | OTT E. Cellulose derivatives as basic materials for plastics[J]. Industrial & Engineering Chemistry, 1940, 32(12): 1641-1647. |
| [33] | XIE Z, LIU D, TANG X, et al. Largely improved dielectric energy performances and safety of BOPP film via surface engineering[J]. Composites Science and Technology, 2023. DOI: 10.1016/j.compscitech.2022.109856. |
| [34] | OPREA M, VOICU S I. Recent advances in composites based on cellulose derivatives for biomedical applica-tions[J]. Carbohydrate Polymers, 2020. DOI: 10.1016/j.carbpol.2020.116683. |
| [35] | ZHU M, WANG Y, ZHU S, et al. Anisotropic, transparent films with aligned cellulose nanofibers[J]. Advanced Materials, 2017. DOI: 10.1002/adma.201606284. |
| [36] | CHEN Q, YING D, CHEN Y, et al. Highly transparent, hydrophobic, and durable anisotropic cellulose films as electronic screen protectors[J]. Carbohydrate Polymers, 2023. DOI: 10.1016/j.carbpol.2023.120735. |
| [37] | ZHANG L, ZHOU A G, SUN B R, et al. Functional and versatile superhydrophobic coatings via stoichiometric silanization[J]. Nature Communications, 2021, 12(1): 1-7. |
| [38] | BARTHLOTT W, NEINHUIS C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 1997, 202(1): 1-8. |
| [39] |
FÜRSTNER R, BARTHLOTT W, NEINHUIS C, et al. Wetting and self-cleaning properties of artificial superhydrophobic surfaces[J]. Langmuir, 2005, 21(3): 956-961.
pmid: 15667174 |
| [40] | LIAO Y, WANG C, DONG Y, et al. Robust and versatile superhydrophobic cellulose-based composite film with superior UV shielding and heat-barrier performances for sustainable packaging[J]. International Journal of Biological Macromolecules, 2023. DOI:10.1016/j.ijbiomac.2023.127178. |
| [41] | TAN H, MA R, LIN C, et al. Quaternized chitosan as an antimicrobial agent: antimicrobial activity, mechanism of action and biomedical applications in orthopedics[J]. International Journal of Molecular Sciences, 2013, 14(1): 1854-1869. |
| [42] | CUI B, LIU L, LI S, et al. Bio-inspired, UV-blocking, water-stable and antioxidant lignin/cellulose films combining high strength, toughness and flexibility[J]. Materials Chemistry Frontiers, 2023, 7(5): 897-905. |
| [43] | ZHOU G, ZHANG H, SU Z, et al. A biodegradable, waterproof, and thermally processable cellulosic bioplastic enabled by dynamic covalent modification[J]. Advanced Materials, 2023. DOI: 10.1002/adma.202301398. |
| [44] | WANG J, EMMERICH L, WU J, et al. Hydroplastic polymers as eco-friendly hydrosetting plastics[J]. Nature Sustainability, 2021, 4(10): 877-883. |
| [45] | GONG K, HOU L, WU P. Hydrogen-bonding affords sustainable plastics with ultrahigh robustness and water-assisted arbitrarily shape engineering[J]. Advanced Materials, 2022. DOI: 10.1002/adma.202201065. |
| [46] | KOH J J, KOH X Q, CHEE J Y, et al. Reprogrammable, sustainable, and 3D-printable cellulose hydroplastic[J]. Advanced Science, 2024. DOI: 10.1002/advs.202402390. |
| [47] | HUANG C, LIAO Y, ZOU Z, et al. Novel strategy to interpret the degradation behaviors and mechanisms of bio- and non-degradable plastics[J]. Journal of Cleaner Production, 2022. DOI: 10.1016/j.jclepro.2022.131757. |
| [48] | LI R, ZHU X, PENG F, et al. Biodegradable, colorless, and odorless PLA/PBAT bioplastics incorporated with corn stover[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(24): 8870-8883. |
| [49] | BASAK S, SINGHAL R S. The potential of supercritical drying as a ″green″ method for the production of food-grade bioaerogels: a comprehensive critical review[J]. Food Hydrocolloids, 2023. DOI: 10.1016/j.foodhyd.2023.108738. |
| [50] | XIONG Y, WANG C, WANG H, et al. A 3D titanate aerogel with cellulose as the adsorption-aggregator for highly efficient water purification[J]. Journal of Materials Chemistry A, 2017, 5(12): 5813-5819. |
| [51] | ZHANG X, ELSAYED I, NAVARATHNA C, et al. Biohybrid hydrogel and aerogel from self-assembled nanocellulose and nanochitin as a high-efficiency adsorbent for water purification[J]. ACS Applied Materials & Interfaces, 2019, 11(50): 46714-46725. |
| [52] | JI Z, ABDALKARIM S Y H, LI H, et al. Waste pomelo peels-derived ultralow density 3D-porous carbon aerogels: mechanisms of ″soft-rigid″ structural formation and solar-thermal energy storage conversion[J]. Solar Energy Materials and Solar Cells, 2023. DOI: 10.1016/j.solmat.2023.112453. |
| [53] | LI Z, WANG M, CHEN L, et al. Highly efficient carbonization of nanocellulose to biocarbon aerogels with ultrahigh light absorption efficiency and evaporation rate as bifunctional solar/electric driven steam generator for water purification[J]. Sustainable Materials and Technologies, 2023. DOI: 10.1016/j.susmat.2023.e00649. |
| [1] | LI Yihong, CAI Junyi, ZHUGE Xiaojie, WU Dongrui, TENG Deying, YU Jianyong, DING Bin, LI Zhaoling. Carboxylated nanocellulose-reinforced flexible transparent conductive elastomer [J]. Journal of Textile Research, 2025, 46(04): 11-19. |
| [2] | LUO Xin, WANG Lei, WANG Xiaoyou, WU Tao, ZHANG Zhenzhen, ZHANG Yifan. Advances in self-assembly mechanism of hierarchical structures and their reconstructed materials [J]. Journal of Textile Research, 2025, 46(03): 225-235. |
| [3] | LEI Fuwang, FENG Qi, HOU Aohan, ZHAO Zhenhong, TAN Jiazhao, ZHAO Jing, WANG Xianfeng. Preparation and properties of polyvinylidene fluoride-polyacrylonitrile/SiO2 fibrous membrane with unidirectional water-transport function [J]. Journal of Textile Research, 2024, 45(12): 1-8. |
| [4] | WANG Hanchen, WU Jiayin, HUANG Biao, LU Qilin. Fabrication and properties of biocompatible nanocellulose self-healing hydrogels [J]. Journal of Textile Research, 2023, 44(12): 17-25. |
| [5] | HAN Fei, LANG Chenhong, QIU Yiping. Research progress of supervision and inspection system for recycling waste textiles [J]. Journal of Textile Research, 2023, 44(03): 231-238. |
| [6] | LIAO Yunzhen, ZHU Ya'nan, GE Mingqiao, SUN Tongming, ZHANG Xinyu. Alcoholysis and product recovery properties of polyethylene terephthalate/ SrAl2O4:Eu2+, Dy3+ hybrid fibers [J]. Journal of Textile Research, 2023, 44(02): 44-54. |
| [7] | LI Qin, LI Xingxing, XIE Fangfang, ZHOU Wenlong, CHEN Kaiyi, LIU Yuqing. Research progress in nanocellulose energy storage materials based on electrospinning and carbonization methods [J]. Journal of Textile Research, 2022, 43(05): 178-184. |
| [8] | HAN Fei, LANG Chenhong, QIU Yiping. Research progress in resource recycling based on waste textiles [J]. Journal of Textile Research, 2022, 43(01): 96-105. |
| [9] | CAO Yuanming, ZHENG Mi, LI Yifei, ZHAI Wangyi, LI Liyan, CHANG Zhuningzi, ZHENG Min. Preparation of MoS2/polyurethane composite fibrous membranes and their photothermal conversion properties [J]. Journal of Textile Research, 2021, 42(09): 46-51. |
| [10] | ZHANG Tingting, XU Kexin, JIN Mengtian, GE Shijie, GAO Guohong, CAI Yixiao, WANG Huaping. Recent progress in preparation of cellulose-based organic-inorganic photocatalysts nanohybrids and it's application in water treatment [J]. Journal of Textile Research, 2021, 42(07): 175-183. |
| [11] | XIAO Mengyuan, ZHOU Xinke, ZHANG Jiayue, REN Yuanlin. Research progress of bio-based lignin flame retardant and its applications [J]. Journal of Textile Research, 2020, 41(12): 182-188. |
| [12] | WANG Shixian, JIANG Shuai, LI Mengmeng, LIU Lifang, ZHANG Li. Preparation and characterization of nanocellulose aerogel modified by silane coupling agent [J]. Journal of Textile Research, 2020, 41(03): 33-38. |
| [13] | OUYANG Pengfei, ZHANG Yufang, JIA Chunzi, ZHANG Jiayu. Properties of regenerated fibers from bamboo pulp/ionic liquid combined system [J]. Journal of Textile Research, 2020, 41(01): 21-25. |
| [14] | . Research progress of graphene-plus adsorption and separation functional materials [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(10): 162-0169. |
| [15] | . Technical requirements on the label of biomass regenerated fibers and related thinking [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(2): 153-0. |
|
||