Journal of Textile Research ›› 2025, Vol. 46 ›› Issue (12): 74-82.doi: 10.13475/j.fzxb.20250403301
• Fiber Materials • Previous Articles Next Articles
DENG Jing, WANG Ruining(
), SUN Runjun, ZHANG Yajuan, GUO Haibing, LEI Ke
CLC Number:
| [1] |
LOU Z, WANG L L, JIANG K, et al. Reviews of wearable healthcare systems: materials, devices and system integration[J]. Materials Science and Engineering: Reports, 2020, 140: 100523.
doi: 10.1016/j.mser.2019.100523 |
| [2] | SOURI H, BHATTACHARYYA D. Highly stretchable multifunctional wearable devices based on conductive cotton and wool fabrics[J]. ACS Applied Materials & Interfaces, 2018, 10(24): 20845-20853. |
| [3] |
ZHAO J J, FU Y L, XIAO Y X, et al. A naturally integrated smart textile for wearable electronics applications[J]. Advanced Materials Technologies, 2020, 5: 1900781.
doi: 10.1002/admt.v5.1 |
| [4] | 夏磊, 汤清伦, 韦炜. 纤维基柔性可拉伸电子器件的研究进展[J]. 棉纺织技术, 2022, 50(4): 73-77. |
| XIA Lei, TANG Qinglun, WEI Wei. Research progress of fiber based flexible and stretchable electronic device[J]. Cotton Textile Technology, 2022, 50(4):73-77. | |
| [5] | 张文枭, 左杏薇, 曲丽君, 等. 基于导电纤维的柔性电子器件研究进展[J]. 复合材料学报, 2023, 40(2): 688-709. |
| ZHANG Wenxiao, ZUO Xingwei, QU Lijun, et al. Research progress of flexible electronic devices based on conductive fibers[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 688-709. | |
| [6] |
LI Y H, ZHOU B, ZHENG G Q, et al. Continuously prepared highly conductive and stretchable SWNT/MWNT synergistically composited electrospun thermoplastic polyurethane yarns for wearable sensing[J]. Journal of Materials Chemistry C, 2018, 6(9): 2258-2269.
doi: 10.1039/C7TC04959E |
| [7] |
DING L, WANG Q, WANG S, et al. A liquid metal core-shell fiber for stretchable smart fabrics[J]. Cell Reports Physical Science, 2023, 4(10): 101603.
doi: 10.1016/j.xcrp.2023.101603 |
| [8] | 刘旭华, 苗锦雷, 曲丽君, 等. 用于可穿戴智能纺织品的复合导电纤维研究进展[J]. 复合材料学报, 2021, 38(1): 67-83. |
| LIU Xuhua, MIAO Jinlei, QU Lijun, et al. Research progress of composite conductive fiber in wearable intelligent textiles[J]. Acta Materiae Compositae Sinica, 2021, 38(1): 67-83. | |
| [9] |
罗梦颖, 陈慧君, 夏明, 等. 弹性导电复合纤维的制备及其应变与温度传感性能[J]. 纺织学报, 2024, 45(10): 9-15.
doi: 10.13475/j.fzxb.20230706201 |
|
LUO Mengying, CHEN Huijun, XIA Ming, et al. Preparation of elastic conductive composite fiber and its stain and temperature sensing properties[J]. Journal of Textile Research, 2024, 45(10): 9-15.
doi: 10.13475/j.fzxb.20230706201 |
|
| [10] | 张雨晴, 姚明远, 尹思一, 等. 碳纳米管涂层氨纶传感材料的性能研究[J]. 棉纺织技术, 2024, 52(5):15-22. |
| ZHANG Yuqing, YAO Mingyuan, YIN Siyi, et al. Property research of carbon nanotube coating spandex sensing material[J]. Cotton Textile Technology, 2024, 52(5): 15-22. | |
| [11] |
GUO R, SUN X Y, YUAN B, et al. Magnetic liquid metal (Fe-EGaIn) based multifunctional electronics for remote self-healing materials, degradable electronics, and thermal transfer printing[J]. Advanced Science, 2019, 6(20): 1901478.
doi: 10.1002/advs.v6.20 |
| [12] |
QI X J, ZHAO H T, WANG L H, et al. Underwater sensing and warming E-textiles with reversible liquid metal electronics[J]. Chemical Engineering Journal, 2022, 437: 135382.
doi: 10.1016/j.cej.2022.135382 |
| [13] |
张亚娟, 王蕊宁, 孙润军, 等. 镓基液态金属基柔性传感材料的制备研究进展[J]. 功能材料, 2024, 55(7): 7070-7078.
doi: 10.3969/j.issn.1001-9731.2024.07.009 |
|
ZHANG Yajuan, WANG Ruining, SUN Runjun, et al. Research progress on gallium based liquid metal based flexible sensing materials[J]. Journal of Functional Materials, 2024, 55(7): 7070-7078.
doi: 10.3969/j.issn.1001-9731.2024.07.009 |
|
| [14] |
YU X C, FAN W, LIU Y, et al. A one-step fabricated sheath-core stretchable fiber based on liquid metal with superior electric conductivity for wearable sensors and heaters[J]. Advanced Materials Technologies, 2022, 7(7): 2101618.
doi: 10.1002/admt.v7.7 |
| [15] | 张春小, 崔丹丹, 杜轶, 等. 镓基液态金属的结构与物性[J]. 自然杂志, 2023, 45(5): 340-354. |
|
ZHANG Chunxiao, CUI Dandan, DU Yi, et al. Structure and physical properties of gallium-based liquid metal[J]. Chinese Journal of Nature, 2023, 45(5): 340-354.
doi: 10.3969/j.issn.0253-9608.2023.05.003 |
|
| [16] |
LI X K, LI M J, ZONG L, et al. Liquid metal droplets wrapped with polysaccharide microgel as biocompatible aqueous ink for flexible conductive devices[J]. Advanced Functional Materials, 2018, 28(39): 1804197.
doi: 10.1002/adfm.v28.39 |
| [17] |
YANG T, FENG J Y, AO H Z, et al. A composite nano-ink of liquid metal nanoparticles and carbon nanotubes for the fabrication of flexible pressure sen-sors[J]. Journal of Electronic Materials, 2024, 53(2): 652-660.
doi: 10.1007/s11664-023-10841-9 |
| [18] | LIAO M H, LIAO H, YE J J, et al. Polyvinyl alcohol-stabilized liquid metal hydrogel for wearable transient epidermal sensors[J]. ACS Applied Materials & Interfaces, 2019, 11(50): 47358-47364. |
| [19] |
TANG S Y, TABOR C, KALANTAR-ZADEH K, et al. Gallium liquid metal: the devil's elixir[J]. Annual Review of Materials Research, 2021, 51: 381-408.
doi: 10.1146/matsci.2021.51.issue-1 |
| [20] |
KIM S, YOO D, LIM J, et al. Simple and effective patterning method of liquid-metal-infused sponge electrode for fabricating 3D stretchable electronics[J]. Advanced Materials Technologies, 2024, 9(14): 2301589.
doi: 10.1002/admt.v9.14 |
| [21] |
LIANG S T, HUANG M J, JIANG D B, et al. 3D printing of TPU-liquid metal composite inks for the preparation of flexible sensing electronics[J]. ChemistryOpen, 2024, 13(9): e202300301.
doi: 10.1002/open.v13.9 |
| [22] | 郑乾帅, 高敏, 赵庆波, 等. OMMT/NMMO/纤维素纺丝液流变性能研究[J]. 合成纤维, 2022, 51(2):1-6. |
| ZHENG Qianshuai, GAO Min, ZHAO Qingbo, et al. Research on rheological properties of OMMT/NMMO/cellulose spinning Solution[J]. Synthetic Fiber in China, 2022, 51(2): 1-6. | |
| [23] | 刘玲, 周彬, 周红涛. PEDOT/PSS质量分数对纺丝液流变性能及导电纤维可纺性的影响[J]. 塑料工业, 2022, 50(2):174-178. |
| LIU Ling, ZHOU Bin, ZHOU Hongtao. Influence of PEDOT/PSS Contents on rheological properties of spinning formulation and spinnability of conducting fiber[J]. China Plastics Industry, 2022, 50(2):174-178. | |
| [24] |
ZHOU L T, LI Y C, XIAO J C, et al. Liquid metal-doped conductive hydrogel for construction of multifunctional sensors[J]. Analytical Chemistry, 2023, 95(7): 3811-3820.
doi: 10.1021/acs.analchem.2c05118 pmid: 36747339 |
| [25] |
LOU Y, LIU H Z, ZHANG J Y. Liquid metals in plastics for super-toughness and high-performance force sensors[J]. Chemical Engineering Journal, 2020, 399: 125732.
doi: 10.1016/j.cej.2020.125732 |
| [1] | WANG Xiaohu, BAO Anna, WEI Jingwen, ZHAO Xiaoman, HAN Xiao, HONG Jianhan. One-step fabrication and application of cross-scale sensing yarns via synergistic electrospinning-electrospraying process [J]. Journal of Textile Research, 2025, 46(12): 101-109. |
| [2] | HOU Zhiwen, REN Zeping, WANG Xiaoning, ZHANG Tianjiao. Preparation and properties of chitosan/alginate-treated flame retardant and antibacterial cotton fabrics [J]. Journal of Textile Research, 2025, 46(12): 171-180. |
| [3] | YANG Mengxiao, QIU Xiaoxue, WU Fang, LIU Lin, YAO Juming. Preparation and strain sensing performance of silk-based conductive hydrogel fibers [J]. Journal of Textile Research, 2025, 46(12): 49-56. |
| [4] | YAO Xiaojun, XU Enting, YANG Xueyuan, FANG Lei, BAO Wei, FANG Kuanjun. Regulation of polyvinylpyrrolidone on structure and properties of polyethylene terephthalate hollow fiber membranes [J]. Journal of Textile Research, 2025, 46(12): 66-73. |
| [5] | LIANG Feng, FANG Yan, ZHANG Weihua, TANG Yuling, LI Shuangyang, ZHOU Jianfei, SHI Bi. Preparation and mechanical properties of collagen-based fibers employing metal-polyphenol networks [J]. Journal of Textile Research, 2025, 46(08): 10-17. |
| [6] | CHEN Yajuan, GUO Hanyu, ZHANG Chentian, LI Xinxin, ZHANG Xueping. Preparation and hygroscopic properties of polyvinyl alcohol/sodium alginate/polyamide 66 composite hydrogel core-spun yarns [J]. Journal of Textile Research, 2025, 46(06): 103-110. |
| [7] | WANG Xu, LI Huanyu, FU Fan, YANG Weifeng, GONG Wei. Continuous preparation and application of nickel-doped liquid metal composite fibers [J]. Journal of Textile Research, 2025, 46(06): 23-30. |
| [8] | XU Tong, XU Ruidong, WANG Yiwen, TIAN Mingwei. Preparation and touching characterization of textile-based touch electronics fabric [J]. Journal of Textile Research, 2025, 46(06): 31-37. |
| [9] | TAN Wenping, ZHANG Shuo, ZHANG Qian, ZHANG Yin, LIU Runzheng, HUANG Xiaowei, MING Jinfa. Preparation and radiation refrigeration properties of polylactic acid fiber aerogel [J]. Journal of Textile Research, 2025, 46(06): 63-72. |
| [10] | SHI Sheng, WANG Yazhou, WANG Shuhua, PANG Mingke, LI Xin, ZHANG Meiling, GAO Chengyong. Preparation of fluorinated waterborne polyurethane from waste polyester fibers by alcoholysis [J]. Journal of Textile Research, 2025, 46(06): 8-16. |
| [11] | ZHANG Zeqi, ZHOU Tao, ZHOU Wenqi, FAN Zhongyao, YANG Jialei, CHEN Guoyin, PAN Shaowu, ZHU Meifang. Research progress in conductive fibers for electrophysiological signal monitoring [J]. Journal of Textile Research, 2025, 46(05): 70-76. |
| [12] | WANG Biao, LI Yuan, DONG Jie, ZHANG Qinghua. Influences of stress in thermal imidization on structure and properties of polyimide fibers [J]. Journal of Textile Research, 2025, 46(03): 1-8. |
| [13] | LIU Jinfeng, DU Kangcun, XIAO Chang, FU Shaohai, ZHANG Liping. Preparation of porous MXene/thermoplastic polyurethane fiber and its stress-strain sensing performance [J]. Journal of Textile Research, 2025, 46(03): 41-48. |
| [14] | YUE Xinyan, SHAO Jianbo, WANG Xiaohu, HAN Xiao, ZHAO Xiaoman, HONG Jianhan. One-dimensional structured flexible capacitive sensors based on silver coated polyamide fiber/polyamide fiber/waterborne polyurethane composite yarns [J]. Journal of Textile Research, 2025, 46(03): 82-89. |
| [15] | WANG Xiaoyan, YANG Shukang, XIAO Guowei, DU Jinmei, XU Changhai. Preparation and performance of photoresponsive long-afterglow phosphorescent fibers with spirooxazine doping [J]. Journal of Textile Research, 2025, 46(02): 1-9. |
|
||