纺织学报 ›› 2025, Vol. 46 ›› Issue (08): 191-198.doi: 10.13475/j.fzxb.20240901701

• 服装工程 • 上一篇    下一篇

基于空间延展功能的菱形褶皱结构造型方法

莫雁婷1,2, 周莉2,3(), 陈思羽4   

  1. 1.北京理工大学 设计与艺术学院, 北京 102401
    2.西南大学 蚕桑纺织与生物质科学院, 重庆 400715
    3.纺织服装产业互联网研究院, 北京 100036
    4.塔里木大学人文学院, 新疆 阿拉尔 843300
  • 收稿日期:2024-09-11 修回日期:2025-04-24 出版日期:2025-08-15 发布日期:2025-08-15
  • 通讯作者: 周莉(1977—),女,教授,硕士。主要研究方向为服装数字化智能可穿戴设计。E-mail: mydtcazz@126.com
  • 作者简介:莫雁婷(2000—),女,硕士生。主要研究方向为服装数字化与可穿戴设计研究。
  • 基金资助:
    教育部人文社科项目(23XJJC760001);重庆市艺术科学规划青年项目(DY24QN01);工信部国合中心“金砖国家工业设计重点课题”项目(GH-GYSJ2024002)

Space extension of clothing materials based on diamond-shaped pleating structure

MO Yanting1,2, ZHOU Li2,3(), CHEN Siyu4   

  1. 1. School of Design and Art, Beijing Institute of Technology, Beijing 102401, China
    2. College of Sericulture Textile and Biomass Science, Southwest University, Chongqing 400715, China
    3. China National Apparel Technology & Innovation Institute, Beijing 100036, China
    4. College of Humanities, Tarim University, Alar, Xinjiang 843300, China
  • Received:2024-09-11 Revised:2025-04-24 Published:2025-08-15 Online:2025-08-15

摘要: 通过对菱形褶皱的空间延展功能进行研究,获取一种可控性的菱形褶皱结构造型方法,以避免传统造型方法导致的褶皱形态不理想与面料用量不可预测问题。首先基于褶皱制作与数字化模拟阐明菱形褶皱空间延展功能对褶皱造型与面料用量的影响,指出研究的必要性;再通过探索延展过程中褶皱的结构变化,提出影响其空间延展功能的关键结构要素,并对这些结构要素的数值控制进行单一造型分析;最后通过整合服装设计流程,提出基于空间延展功能的菱形褶皱结构造型方法,并结合设计实践证明该方法在服装中应用的可行性。结果表明:菱形褶皱造型中褶谷、褶脊与褶量的数值设定是影响其空间延展功能发挥的关键结构因素;本文提出的方法相较于传统造型方法,能够更准确地在服装制作早期依照设计效果把控褶皱结构形态,同时预测制作褶皱所需面料用量,在一定程度上减少设计过程中的实验成本。

关键词: 菱形褶皱, 空间延展功能, 服装造型方法, 数字化模拟, 服装设计

Abstract:

Objective Through in-depth study and analysis of the extension characteristics of the diamond-shaped pleating structures in space, an innovative and controllable shaping method is developed. This technology aims to improve the pleat modeling effect associated to traditional pleat design methods and to overcome the difficulty in accurately estimating the amount of fabric required in the design process. This research would not only improve the accuracy of the design, but also optimize the efficiency of fabric use, providing designers with a more efficient and accurate design approach.

Method Through diamond-shaped pleat-making and digital simulations, the impact of the spatial extension function of diamond-shaped pleats on pleat shaping and fabric consumption was clarified, highlighting the necessity of this research. The single modeling analysis of the key structure of the diamond-shape space extension function was carried out. Through sample experiments and digital models, the influence of key structural values on the spatial extension function of diamond-shaped pleat and the numerical control method in the manufacturing process were discussed. Three groups of diamond-shaped pleat samples were tested to collect the key structures in the samples. On the one hand, the maximum spatial extension prediction and the pleats area fabric usage prediction of the samples were calculated by the modeling method proposed in this paper. On the other hand, the maximum spatial extension measurement value and pleats area fabric usage measurement value were obtained by actual measurement. The correlation between the predicted and measured values of the two sample groups was compared by SPSS to verify the accuracy of the proposed method. Finally, shaping method based on the spatial extension function was proposed after an integrated shaping analysis. Different design cases were studied to prove the feasibility in clothing design.

Results The numerical settings for valleys, ridges, and amounts of diamond-shaped pleat were crucial for the spatial extension function. Wider pleat wings provided more ease for movement, increasing the spatial extension. The experimental results showed that the diamond-shaped pleat wing was equal to the first step of the double pleat method. The relationship between diamond-shaped pleats ridges and wings worked to determine the maximum spatial extension. When pleat ridge > pleat wing, maximum spatial extension amount = wing width×2×number of pleats, and when pleat ridge ≤ pleat wing,maximum spatial extension amount = ridge length×2×number of pleats. It was also found that when more diamond-shaped pleats were used, more ease for spatial extension in clothing was created. The experiment showed that the amount of diamond-shaped pleats was equal to the pleats amount of double pleat, which is described as (diamond-shaped pleats + 1)×2. Based on the research of the above key structural elements and the clothing design process, the diamond-shaped pleat structure modeling method based on the spatial extension function' is proposed on the basis of the double pleat method. The method was created step by step according to the three steps of setting requirements, quantifying structure and making forming, and the diamond wrinkle data was integrated into the garment making steps. Three groups of diamond-shaped pleat samples were made according to the method proposed in this paper. By comparing the expected value of the maximum spatial extension amount with the measured value, the correlation coefficient between the expected value and the measured value of the fabric consumption in the pleats area, it was seen that the modeling method proposed in this research was accurate. Through the practice of clothing design, the feasibility of this method in practical application was verified.

Conclusion Compared with the previous traditional methods, this newly developed method can control and adjust more accurately the wrinkle structure according to the specific needs at the early stage of garment production. It can also accurately predict and calculate the amount of fabric required, thereby effectively reducing the cost of conducting experiments and sample preparation. This study provides a more scientific, efficient and practical method for the creative process of pleat design in the field of fashion design.

Key words: diamond-shaped pleat, space extension function, clothing styling method, digital simulation, fashion design

中图分类号: 

  • TS941.17

图1

菱形褶皱的结构要素"

图2

菱形褶皱静置及延展状态下结构特征与幅宽变化"

图3

菱形褶皱静置及延展状态下关键结构要素对比图"

图4

菱形褶皱制作流程"

图5

褶皱模型与横截面"

图6

4组样本制作中的针距关系"

表1

不同平缝间隔情况下褶皱谷深度数据采集"

样本
编号
针迹ab
距离/cm
针迹bc
距离/cm
叠褶褶翼
宽度/cm
菱形褶皱褶
翼宽度/cm
A 1 1 1 1
B 0.5 0.5 0.5 0.5
C 1 0.5 0.75 0.75
D 0.5 1 0.75 0.75

图7

不同脊-翼关系下菱形褶皱结构分析"

图8

不同脊-翼关系下菱形褶皱最大限度空间延展状态"

表2

不同数量菱形褶皱所需叠褶数量数据采集"

样本编号 菱形褶皱数量/个 对应叠褶数量/个
A 1 4
B 2 6
C 3 8
D 4 10
E 5 12

图9

菱形褶皱实验模型"

图10

基于空间延展功能菱形褶皱结构造型方法"

表3

造型方法预期值与测量值数据记录"

样本
编号
R/cm W/cm P/个 褶翼状态与
脊-翼关系
最大空间延展量 褶皱区域面料用量
T/cm 测量值/cm Q/cm 测量值/cm
A1 1.3 0.9 5 不完全抬升
脊<翼
9 8.7 31.2 33
A2 2.7 2 10 40 39.5 118.8 119.3
A3 2 1.5 15 45 44.3 128 128.4
B1 1 1.5 5 完全抬升
脊>翼
10 9.5 24 24.3
B2 2.6 4 10 52 51.5 114.4 115
B3 1.4 2 15 42 41.6 89.6 90.4
C1 1.5 1.5 5 不完全抬升
脊=翼
15 14.7 36 36
C2 3 3 10 60 59.8 132 133.1
C3 1 1 15 15 15 64 64.5

图11

菱形褶皱空间延展功能在服装中的应用制作流程"

图12

肩部菱形褶皱空间延展功能设计应用"

[1] COLETTE W. The art of manipulating fabric[M]. London: Chilton Book Company, 1996:126-128.
[2] PAUL J. Complete pleats:pleating techniques for fashion, architecture and design[M]. London: Laurence King Publishing, 2020:40-43.
[3] 刘雪花. 绣缀技法在礼服上的应用[J]. 大众文艺, 2017(22):113-115.
LIU Xuehua. Application of embroidering techniques in dresses[J]. Art and Literature for the Masses, 2017(22):113-115.
[4] 李璐. 缝缩手法在服装立体裁剪中的技术原则[J]. 辽宁丝绸, 2016(4):43-45.
LI Lu. The technical principle of seam shrinkage technique in three-dimensional cutting of clothing[J]. Liaoning Silk, 2016(4):43-45.
[5] 邹平, 李璐. 绣缀法服装立体裁剪技术[J]. 毛纺科技, 2024, 52(3):96-102.
ZOU Ping, LIU Lu. Research on three-dimensional cutting technology of embroidered clothing[J]. Wool Textile Journal, 2024, 52(3):96-102.
[6] 莫雁婷. 基于叠褶法的菱形褶皱分类与创新应用[J]. 西部皮革, 2021, 43(8):46-47.
MO Yanting. diamond-shaped pleats classification and innovative application based on fold method[J]. Western Leather, 2021, 43(8):46-47.
[7] 周莉, 樊培宏, 金玉婷, 等. 服装逆向造型的数字化设计方法[J]. 纺织学报, 2023, 44(12):138-144.
doi: 10.13475/j.fzxb.20221001901
ZHOU Li, FAN Peihong, JIN Yuting, et al. Digital design method of clothing reverse modeling[J]. Journal of Textile Research, 2023, 44(12):138-144.
doi: 10.13475/j.fzxb.20221001901
[8] 李晶晶. 服用面料褶曲外观表征与测试方法[D]. 上海: 东华大学, 2020:9-13.
LI Jingjing. Appearance characterization and test method ofpleats for wearing fabrics[D]. Shanghai: Donghua University, 2020:9-13.
[9] MINCHEN L, SHEFFER A, GRINSPUN E, et al. Foldsketch: enriching garments with physically reproduciblefolds[J]. ACM Transactions on Graphics, 2018, 37(4): 1-13.
[10] 苏旭中, 魏艳红, 刘新金, 等. 纺纱方式对织物抗皱性能及拉伸弹性的影响[J]. 纺织学报, 2020, 41(4):33-38.
SU Xuzhong, WEI Yanhong, LIU Xinjin. Effect of spinning method on wrinkle-resistance and tensile elasticity of fabric[J]. Journal of Textile Research, 2020, 41(4): 33-38.
[11] CAI Qinxiao, FENG Xinsun, MOHAMMADo Irfan Iqba, et al. Mechanical characterization of surface wrinkling properties in fibrous sheet materials by facile folding process[J]. Polymer Testing, 2021, 97(3):107153.
[12] 陈莹, 魏静, 马俊淑. 叠褶在服装造型中的应用[J]. 纺织学报, 2018, 39(5):97-102.
CHEN Ying, WEI Jing, MA Junshu. Application of double pleat in apparel modeling[J]. Journal of Textile Research, 2018, 39(5):97-102.
[13] 章建跃. 研究三角形的数学思维方式[J]. 数学通报, 2019, 58(4):1-10.
ZHANG Jianyue. Studying mathematical way of thinking oftriangles[J]. Mathematical Bulletin, 2019, 58(4):1-10.
[1] 胡安妮, 王婕, 杨五世, 钟跃崎. 面向虚拟展示的三维扫描服装纸样生成[J]. 纺织学报, 2025, 46(08): 209-216.
[2] 罗玉玲, 杨喜竹, 王星岚, 郑晓慧, 赵胜男, 常素芹. 以相变包为冷源的冷却服研究进展[J]. 纺织学报, 2025, 46(07): 253-261.
[3] 杨子田, 王诗琪, 雷梦洁. 马面裙坠感指数及结构解析[J]. 纺织学报, 2025, 46(07): 186-192.
[4] 于晓坤, 易萍, 谢冠婧, 蔡凌霄. 基于人体动力学的服装衣袖运动舒适性探究[J]. 纺织学报, 2025, 46(06): 196-202.
[5] 吕迎蕊, 王朝晖, 叶勤文, 刘欢欢, 孙月鑫. 运动服装的设计方法及发展趋势[J]. 纺织学报, 2025, 46(03): 256-265.
[6] 周莉, 樊培宏, 金玉婷, 张龙琳, 李新荣. 服装逆向造型的数字化设计方法[J]. 纺织学报, 2023, 44(12): 138-144.
[7] 杨钰蝶, 李承璋, 金剑, 郑晶晶. 基于上肢活动性的灭火防护服背带的设计与评价[J]. 纺织学报, 2023, 44(11): 183-189.
[8] 刘咏梅, 刘思忆, 于晓坤, 薛惠心, 张向辉. 中国东部地区中老年女性体型特征与分类[J]. 纺织学报, 2023, 44(07): 184-191.
[9] 陈佳, 杨聪聪, 刘军平, 何儒汉, 梁金星. 手绘草图到服装图像的跨域生成[J]. 纺织学报, 2023, 44(01): 171-178.
[10] 王迪, 柯莹, 王宏付. Voronoi图形在参数化服装造型构建中的应用[J]. 纺织学报, 2021, 42(12): 131-137.
[11] 金鹏, 薛哲彬, 江润恬, 刘丹宇, 张弛. 具有安全防护功能的智能盲人服设计[J]. 纺织学报, 2021, 42(08): 135-143.
[12] 唐茜, 张冰冰, 郑笑雨. 婴幼儿可穿戴智能监测服装设计[J]. 纺织学报, 2021, 42(08): 156-160.
[13] 徐增波, 张玲, 张艳红, 陈桂清. 基于复杂网络提取和支持向量机模型分类的服装领型研究[J]. 纺织学报, 2021, 42(06): 146-152.
[14] 张恒. 基于翻领松量结构模型的翻折领结构设计方法[J]. 纺织学报, 2020, 41(11): 128-135.
[15] 杨娟, 张远鹏. 服装设计知识图谱中的服装装饰工艺分类模型[J]. 纺织学报, 2020, 41(08): 95-100.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!