纺织学报 ›› 2025, Vol. 46 ›› Issue (10): 30-38.doi: 10.13475/j.fzxb.20250200301

• 纤维材料 • 上一篇    下一篇

负载厚朴酚的抗菌纳米纤维膜的制备及其性能

吴乐然1, 吴霓欢2, 李林耿1, 钟意1, 陈鸿鹏2, 汤南1()   

  1. 1.广东医科大学 药学院, 广东 东莞 523808
    2.广东医科大学 生物医学工程学院, 广东 东莞 523808
  • 收稿日期:2025-02-05 修回日期:2025-06-19 出版日期:2025-10-15 发布日期:2025-10-15
  • 通讯作者: 汤南(1976—),女,教授,博士。主要研究方向为生物医用材料。E-mail:tn6559@foxmail.com
  • 作者简介:吴乐然(1999—),男,硕士生。主要研究方向为多功能伤口敷料的制备及应用。
  • 基金资助:
    广东省普通高校重点科研平台和项目(2024ZDZX3040)

Preparation and performance of antibacterial nanofiber membrane loaded with magnolol

WU Leran1, WU Nihuan2, LI Lingeng1, ZHONG Yi1, CHEN Hongpeng2, TANG Nan1()   

  1. 1. School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, China
    2. School of Biomedical Engineering, Guangdong Medical University, Dongguan, Guangdong 523808, China
  • Received:2025-02-05 Revised:2025-06-19 Published:2025-10-15 Online:2025-10-15

摘要: 为开发具备多种功能的新型伤口敷料,以玉米醇溶蛋白(Zein)、明胶(Gel)、厚朴酚(MAG)为原料,80%乙酸溶液为溶剂,通过静电纺丝技术制备了一种负载MAG的纳米纤维膜。借助场发射扫描电镜、红外光谱仪、接触角测量仪、拉力试验机、紫外-可见分光光度计等仪器分析不同质量比Zein/Gel纺丝溶液对纳米纤维膜的微观形貌及结构、润湿性、水蒸气透过性、力学性能、药物释放性能、生物相容性、溶血性能、抗氧化性和抗菌性能的影响。结果表明:随着纺丝溶液中Gel质量占比减小,溶液黏度下降,Zein/Gel/MAG 纳米纤维直径、水蒸气透过率和弹性模量逐渐减小,而纤维膜水接触角逐渐增大;此外,Zein/Gel/MAG纳米纤维膜中MAG药物释放性能与纤维膜中的Gel质量占比密切相关;Zein/Gel/MAG纳米纤维膜对L929细胞无明显毒性,并且纤维膜溶血率均不超过2%,具有良好的生物相容性;Zein/Gel/MAG纳米纤维膜对1,1-二苯-2-苦基肼自由基均具有一定的清除作用;Zein/Gel/MAG纳米纤维膜对金黄色葡萄球菌和大肠埃希菌均有明显的抑制作用。综上认为,Zein/Gel/MAG纳米纤维膜在伤口敷料方面具有潜在的应用前景。

关键词: 厚朴酚, 玉米醇溶蛋白, 明胶, 纳米纤维膜, 抑菌, 伤口敷料, 静电纺丝

Abstract:

Objective To overcome the limitations of traditional wound dressings such as poor antibacterial function and the need for frequent replacement, it was necessary to develop innovative multifunctional wound dressings. In this study, a nanofiber membrane loaded with magnolol (MAG) was fabricated using electrospinning technology. The membrane's morphology, wettability, water vapor transmission rate, mechanical properties, drug release, biocompatibility, hemocompatibility, antioxidant activity and antibacterial efficacy were systematically evaluated to explore its potential application as a wound dressing.

Method MAG was dissolved in varying mass ratios of zein/gelatin (Zein/Gel) solutions to prepare precursor solutions for electrospinning. Zein/Gel/MAG composite nanofiber membranes were then fabricated. The nanofibers' microstructure, chemical composition, and wettability were characterized using scanning electron microscopy, Fourier-transform infrared spectroscopy (FT-IR) and contact angle measurements. The effects of different Zein/Gel mass ratios on water vapor transmission rate, mechanical properties, MAG release, cytotoxicity, hemocompatibility, antioxidant activity and antibacterial efficacy were also investigated.

Results The fabricated Zein/Gel/MAG nanofiber membranes displayed a smooth surface without obvious bead formation or adhesion, and the nanofiber diameter decreased as the mass proportion of Gel in the spinning solution declined. FT-IR analysis confirmed the presence of Zein, Gel and MAG in the nanofibers. Water contact angle measurements indicated that the nanofiber membranes were hydrophobic, with increasing hydrophobicity accompanying the reduction in the mass proportion of Gel, reaching a maximum value of (116.50± 9.24)°. All nanofiber membranes demonstrated water vapor transmission rates above (2 527.42±262.94) g/(m2·d), reaching a maximum value of (2 805.50±65.17) g/(m2·d).The cumulative release of MAG from nanofiber membranes was strongly correlated with the mass proportion of Gel. Furthermore, the Zein/Gel/MAG nanofiber membranes exhibited no significant cytotoxicity to L929 cells and hemolysis rates of less than 2%. The scavenging rates for 1,1-diphenyl-2-picrylhydrazine free radical were in the range of(32.93±2.22)% to (53.03±8.32)%. The maximum widths of bacteriostatic circle for S.aureus and E.coli were (1.89±0.62) mm and (1.80±0.06) mm, respectively.

Conclusion The Zein/Gel/MAG nanofiber membranes were successfully prepared via electrospinning. These membranes exhibited excellent water vapor transmission rate, biocompatibility and hemocompatibility, as well as remarkable antioxidant activity. Specially, the obvious antibacterial efficacies against S.aureus and E.coli were observed. Therefore, the Zein/Gel/MAG nanofiber membrane had significant potential prospect for wound dressings.

Key words: magnolol, zein, gelatin, nanofiber membrane, antibacterial, wound dressing, electrospinning

中图分类号: 

  • TQ340.64

图1

Zein/Gel/MAG纳米纤维膜形貌照片"

图2

纳米纤维直径分布直方图"

表1

纺丝溶液的黏度值"

纺丝溶液 黏度/(mPa·s)
Zein/Gel/MAG-1 1 545.5
Zein/Gel/MAG-2 1 321.2
Zein/Gel/MAG-3
Zein/Gel/MAG-4
869.7
561.8

图3

Gel、MAG、Zein及Zein/Gel/MAG-1红外光谱"

图4

Zein/Gel/MAG纳米纤维膜的水接触角"

图5

Zein/Gel/MAG纳米纤维膜应力-应变曲线"

图6

Zein/Gel/MAG纳米纤维膜药物累计释放曲线"

图7

Zein/Gel/MAG纳米纤维膜浸提液对L929细胞活力的影响"

图8

Zein/Gel/MAG纳米纤维膜溶血照片及溶血率"

图9

Zein/Gel/MAG纳米纤维膜抗氧化结果"

图10

纳米纤维膜的抑菌效果 注:a—Zein/Gel-1; b—Zein/Gel-2; c—Zein/Gel-3; d—Zein/Gel-4; e—Zein/Gel/MAG-1; f—Zein/Gel/MAG-2; g—Zein/Gel/MAG-3; h—Zein/Gel/MAG-4。"

[1] 李兢思, 李俊欣, 王思炜, 等. 浅析生物医用材料中伤口敷料的研究现状[J]. 生物医学工程与临床, 2023, 27(6): 818-823.
LI Jingsi, LI Junxin, WANG Siwei, et al. Brief analysis on the research status of wound dressings in biomedical materials[J]. Biomedical Engineering and Clinical Medicine, 2023, 27(6): 818-823.
[2] 顾雅楠, 桑胜南, 张玮. 浅谈棉质医用敷料的研究现状[J]. 中国纤检, 2022(7): 106-107.
GU Yanan, SANG Shengnan, ZHANG Wei. Brief discussion on the research status of cotton medicaldressings[J]. China Fiber Inspection, 2022(7): 106-107.
[3] 苏芳芳, 经渊, 宋立新, 等. 我国静电纺丝领域研究现状及其热点:基于CNKI数据库的可视化文献计量分析[J]. 东华大学学报(自然科学版), 2024, 50(1): 45-54.
SU Fangfang, JING Yuan, SONG Lixin, et al. Present situation and hotspot of electrospinning in China: visual bibliometric analysis based on CNKI database[J]. Journal of Donghua University (Natural Science), 2024, 50(1): 45-54.
[4] LI T, SUN M, WU S. State-of-the-art review of electrospun gelatin-based nanofiber dressings for wound healing applications[J]. Nanomaterials, 2022. DOI: 10.3390/nano12050784.
[5] 向金涛, 张从芬. 静电纺丝复合纳米纤维在生物医药的应用研究进展[J]. 天津化工, 2024, 38(1): 32-35.
XIANG Jintao, ZHANG Congfen. Research progress of electrostatic spinning composite nanofibers for biomedical applications[J]. Tianjin Chemical Industry, 2024, 38(1): 32-35.
[6] 杨海贞, 魏肃桀, 马闯, 等. 静电纺丝纳米纤维在药物输送领域的应用[J]. 现代纺织技术, 2024, 32(10): 56-67.
YANG Haizhen, WEI Sujie, MA Chuang, et al. Research on the application of electrospinning nanofibers in the field of drug delivery[J]. Advanced Textile Technology, 2024, 32(10): 56-67.
[7] 贾淑平, 曾睿, 但卫华, 等. 明胶-PVA复合纤维的研制及性能表征[J]. 高分子材料科学与工程, 2008(9): 131-134.
JIA Shuping, ZENG Rui, DAN Weihua, et al. Preparation and characterization of gelatin-PVA composite fiber[J]. Polymer Materials Science & Engineering, 2008(9): 131-134.
[8] LI H, ZHANG Z, CHEN J, et al. Effect of Cu2+ on the binding of catechins to zein through multi-spectral and in silico analyses[J]. Food Chemistry, 2025. DOI: 10.1016/j.foodchem.2024.141547.
[9] ZHOU W, JIANG Z, LIN X, et al. Preparation of MPN@Zein-PpIX membrane and its antibacterial properties[J]. ACS Omega, 2024, 9(27): 29274-29281.
doi: 10.1021/acsomega.4c00180 pmid: 39005804
[10] 刘松奇, 向慧, 吴京京, 等. 静电溶吹制备明胶/玉米醇溶蛋白/百里香酚纳米纤维及其表征[J]. 食品科学, 2023, 44(12): 50-59.
LIU Songqi, XIANG Hui, WU Jingjing, et al. Fabrication and characterization of elatin/zein/thymol nanofibers by electro-blown spinning[J]. Food Science, 2023, 44(12): 50-59.
[11] OU Q, MIAO Y, YANG F, et al. Zein/gelatin/nanohydroxyapatite nanofibrous scaffolds are biocompatible and promote osteogenic differentiation of human periodontal ligament stem cells[J]. Biomaterials Science, 2019, 7(5): 1973-1983.
doi: 10.1039/c8bm01653d pmid: 30820493
[12] WU X, LIU Z, HE S, et al. Development of an edible food packaging gelatin/zein based nanofiber film for the shelf-life extension of strawberries[J]. Food Chemistry, 2023. DOI: 10.1016/j.foodchem.2023.136652.
[13] OUYANG Y, TANG X, ZHAO Y, et al. Disruption of bacterial thiol-dependent redox homeostasis by magnolol and honokiol as an antibacterial strategy[J]. Antioxidants (Basel, Switzerland), 2023. DOI: 10.3390/antiox12061180.
[14] ZHOU Z, WANG Y, XING Y, et al. Magnolol inhibits high fructose-induced podocyte inflammation via downregulation of TKFC/Sp1/HDAC4/Notch1 activa-tion[J]. Pharmaceuticals (Basel, Switzerland), 2024. DOI: 10.3390/ph17111416.
[15] JIA B, HE J, ZHANG Y, et al. Pulmonary delivery of magnolol-loaded nanostructured lipid carriers for COPD treatment[J]. International Journal of Pharmaceutics, 2024. DOI: 10.1016/j.ijpharm.2024.124495.
[16] CHEN Y, HUANG K, DING X, et al. Magnolol inhibits growth and induces apoptosis in esophagus cancer KYSE-150 cell lines via the MAP kinase pathway[J]. Journal of Thoracic Disease, 2019, 11(7): 3030-3038.
doi: 10.21037/jtd.2019.07.46 pmid: 31463132
[17] 赵新哲, 王绍霞, 高晶, 等. 静电纺胶原/聚环氧乙烷纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(4): 33-41.
ZHAO Xinzhe, WANG Shaoxia, GAO Jing, et al. Preparation and properties of electrospun collagen/polyethylene oxide nanofiber membranes[J]. Journal of Textile Research, 2021, 42(4): 33-41.
doi: 10.1177/004051757204200107
[18] CHEN X, XIAO J, CAI J, et al. Phase separation behavior in zein-gelatin composite film and its modulation effects on retention and release of multiple bioactive compounds[J]. Food Hydrocolloids, 2020. DOI: 10.1016/j.foodhyd.2020.106105.
[19] ERSCH C, VAN DER LINDEN E, VENEMA P, et al. The microstructure and rheology of homogeneous and phase separated gelatine gels[J]. Food Hydrocolloids, 2016, 61: 311-317.
doi: 10.1016/j.foodhyd.2016.05.022
[20] DENG L, KANG X, LIU Y, et al. Characterization of gelatin/zein films fabricated by electrospinning vs solvent casting[J]. Food Hydrocolloids, 2018, 74: 324-332.
doi: 10.1016/j.foodhyd.2017.08.023
[21] 吴奇霞, 马建中, 张雷, 等. 明胶基静电纺丝复合纤维材料的研究进展[J]. 精细化工, 2023, 40(10): 2189-2199.
WU Qixia, MA Jianzhong, ZHANG Lei, et al. Research progress on gelatin-based electrospinning composite fiber materials[J]. Fine Chemicals, 2023, 40(10): 2189-2199.
[22] 李曼, 武丁胜, 魏安方, 等. 静电纺丝聚己内酯/明胶载姜黄素生物活性敷料的制备和性能[J]. 材料导报, 2022, 36(11): 233-239.
LI Man, WU Dingsheng, WEI Anfang, et al. Preparation and performance of electrospinning curcumin loaded polycaprolactone/gelatin bioactive wound dres-sing[J]. Materials Reports, 2022, 36(11): 233-239.
[23] JADA S, REDDY DOMA M, SINGH P P, et al. Design and synthesis of novel magnolol derivatives as potential antimicrobial and antiproliferative com-pounds[J]. European Journal of Medicinal Chemistry, 2012, 51: 35-41.
doi: 10.1016/j.ejmech.2011.12.039
[24] RADÜNZ M, MOTA CAMARGO T, DOS SANTOS HACKBART H C, et al. Characterization of ultrafine zein fibers incorporated with broccoli, kale, and cauliflower extracts by electrospinning[J]. Journal of the Science of Food and Agriculture, 2022, 102(10): 4210-4217.
doi: 10.1002/jsfa.v102.10
[25] LIU Y, ZHU T, LI J, et al. Magnolol hybrid nanofibrous mat with antibacterial, anti-inflammatory, and microvascularized properties for wound treat-ment[J]. Biomacromolecules, 2022, 23(3): 1124-1137.
doi: 10.1021/acs.biomac.1c01430
[26] 蒲传奋, 刘雯, 姜春伟, 等. 丁香酚/玉米醇溶蛋白纳米粒子膜的制备及表征[J]. 粮食与饲料工业, 2017(1): 35-39,47.
PU Chuanfen, LIU Wen, JIANG Chunwei, et al. Preparation and characterization of eugenol-zein nanoparticles film[J]. Cereal & Feed Industry, 2017(1): 35-39,47.
[27] DU M, LIU S, LAN N, et al. Electrospun PCL/gelatin/arbutin nanofiber membranes as potent reactive oxygen species scavengers to accelerate cutaneous wound healing[J]. Regen Biomater, 2024. DOI: 10.1093/rb/rbad114.
[28] YANG F, MIAO Y, WANG Y, et al. Electrospun zein/gelatin scaffold-enhanced cell attachment and growth of human periodontal ligament stem cells[J]. Mate-rials (Basel), 2017. DOI: 10.3390/ma10101168.
[29] 杨丽峰, 张叶, 李晓殿, 等. 厚朴酚影响增生性瘢痕成纤维细胞生物学功能的实验研究[J]. 中国美容整形外科杂志, 2022, 33(11): 668-671.
YANG Lifeng, ZHANG Ye, LI Xiaodian, et al. Experimental study on the effect of magnolol on the biological function of hypertrophic scar fibroblasts[J]. Chinese Journal of Aesthetic and Plastic Surgery, 2022, 33(11): 668-671.
[30] KOSTIĆ K, BRBORIĆ J, DELOGU G, et al. Antioxidant activity of natural phenols and derived hydroxylated biphenyls[J]. Molecules (Basel, Switzerland), 2023. DOI: 10.3390/molecules28062646.
[31] 刘锦渊, 刘晓丽, 夏文水. 负载丁香酚的改性纳米粒对玉米醇溶蛋白膜性能的影响[J]. 食品科学技术学报, 2023, 41(5): 123-135.
LIU Jinyuan, LIU Xiaoli, XIA Wenshui. Effects of modified nanoparticles loaded with eugenol on properties of zein films[J]. Journal of Food Science and Technology, 2023, 41(5): 123-135.
[1] 毛泽, 高俊, 凌磊, 武丁胜, 陶云, 张春, 李申, 凤权. 聚丙烯腈/聚吡咯纳米纤维膜的制备及其对铬离子的吸附性能[J]. 纺织学报, 2025, 46(09): 57-65.
[2] 傅林, 钱建华, 单江音, 林灵, 卫梦蓉, 翁可欣, 吴晓睿. 银纳米线/聚氨酯纳米纤维膜柔性传感器制备及其性能[J]. 纺织学报, 2025, 46(09): 74-83.
[3] 刘健, 潘山山, 刘泳汝, 尹兆松, 任康佳, 赵庆浩. 多尖端锯齿状静电纺丝喷头的设计及优化[J]. 纺织学报, 2025, 46(08): 217-225.
[4] 马晓远, 包伟. 防水透湿纳米纤维复合织物研究现状及发展趋势[J]. 纺织学报, 2025, 46(08): 254-262.
[5] 时虎, 王赫, 王洪杰, 潘显苗. 多孔交联纳米纤维基超级电容器隔膜的设计[J]. 纺织学报, 2025, 46(08): 45-52.
[6] 徐丽亚, 汪瑱, 杨鸿杰, 汪蔚. 氧化锌-银/生物基聚酰胺56纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2025, 46(07): 37-45.
[7] 贾陈诺瓦, 张勇, 朱威岩, 刘赛, 唐宁. 芯纱种类对聚丙烯腈纳米纤维导电包芯纱性能的影响[J]. 纺织学报, 2025, 46(07): 87-95.
[8] 王惠婷, 陈宇鉴, 刘诗仪, 张显涛, 陆斌, 邹专勇, 王建, 张寅江. 海藻酸盐基非织造医用敷料的研究进展[J]. 纺织学报, 2025, 46(06): 240-249.
[9] 王春翔, 李姣, 解开放, 薛宏坤, 徐广标. 天麻多糖/聚乙烯醇静电纺抗菌保鲜膜的制备与性能[J]. 纺织学报, 2025, 46(06): 73-79.
[10] 张嘉诚, 于影, 左雨欣, 顾志清, 汤腾飞, 陈洪立, 吕勇. 聚丙烯腈/二硫化钼纤维薄膜的挠曲电效应与扭转传感特性[J]. 纺织学报, 2025, 46(06): 80-87.
[11] 邱月, 杨询, 李昊, 李海东, 吴国忠, 张彩丹. 聚琥珀酰亚胺纳米纤维膜改性及其染料吸附性能[J]. 纺织学报, 2025, 46(06): 88-95.
[12] 陈亚娟, 郭瀚宇, 张陈恬, 李欣欣, 张雪萍. 聚乙烯醇/海藻酸钠/锦纶66复合水凝胶包芯纱的制备及其吸湿性能[J]. 纺织学报, 2025, 46(06): 103-110.
[13] 李鹏飞, 罗忆心, 张子凡, 陆宁, 陈碧泠, 许建梅. 丝素/壳聚糖/明胶栓塞微球的制备及其降解性能[J]. 纺织学报, 2025, 46(05): 116-124.
[14] 时晓聪, 陈莉, 杜迅. 茜素-聚乳酸/胶原蛋白纳米纤维膜的制备及其氨气检测性能[J]. 纺织学报, 2025, 46(05): 143-150.
[15] 闫静, 王亚倩, 刘晶晶, 李好义, 杨卫民, 康卫民, 庄旭品, 程博闻. 熔融静电纺长丝纱的制备及其在摩擦纳米发电机中的应用[J]. 纺织学报, 2025, 46(05): 23-29.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!