纺织学报 ›› 2025, Vol. 46 ›› Issue (07): 10-18.doi: 10.13475/j.fzxb.20240802701

• 纤维材料 • 上一篇    下一篇

静电场协同构象羽绒/二氧化硅气凝胶保暖材料

张莎莎1, 蔡牧航1, 吕晓静2, 胡丹3, 刘娟3, 吉星照4, 曹根阳5(), 王浩娜6   

  1. 1 武汉纺织大学 纺织科学与工程学院, 湖北 武汉 430200
    2 波司登羽绒服装有限公司, 江苏 苏州 215500
    3 武汉裕大华纺织有限公司, 湖北 武汉 430415
    4 江苏太帛先进纤维科技有限公司, 江苏 无锡 214142
    5 武汉纺织大学 纺织新材料与先进加工全国重点实验室, 湖北 武汉 430200
    6 武汉职业技术学院 时尚与传媒学院, 湖北 武汉 430072
  • 收稿日期:2024-08-16 修回日期:2025-03-28 出版日期:2025-07-15 发布日期:2025-08-14
  • 通讯作者: 曹根阳(1981—),男,教授,博士。主要研究方向为高性能纤维颜色构建及功能性面料研发。E-mail:genyang.cao@wtu.edu.cn
  • 作者简介:张莎莎(2000—),女,硕士生。主要研究方向为功能保暖材料。
  • 基金资助:
    国家自然科学基金地区联合基金项目(U21A2095);湖北省重点研发计划项目(2021BAA068);湖北省重点研发计划项目(2020DGC003)

Electrostatic field synergistic conformation of down/silicon dioxide aerogel warmth keeping materials

ZHANG Shasha1, CAI Muhang1, LÜ Xiaojing2, HU Dan3, LIU Juan3, JI Xingzhao4, CAO Genyang5(), WANG Haona6   

  1. 1 College of Textile Science and Engineering, Wuhan Textile University, Wuhan, Hubei 430200, China
    2 Bosideng Down Apparel Co., Ltd., Suzhou, Jiangsu 215500, China
    3 Wuhan Yudahua Textile Co., Ltd., Wuhan, Hubei 430415, China
    4 Jiangsu Taipal Advanced Fiber Technology Co., Ltd., Wuxi, Jiangsu 214142, China
    5 State Key Laboratory of New Textile Materials and Advanced Processing, Wuhan Textile University, Wuhan, Hubei 430200, China
    6 School of Fashion and Media, Wuhan Institute of Vocational Technology, Wuhan, Hubei 430072, China
  • Received:2024-08-16 Revised:2025-03-28 Published:2025-07-15 Online:2025-08-14

摘要:

针对传统防寒服装厚重臃肿的缺点,且为有效解决气凝胶粉末填充材料易团聚、掉粉的问题,基于羽绒和气凝胶粉末2种经典保暖材料,巧妙利用羽绒易静电和气凝胶粉末质轻的特点,开发保暖性能更优的复合保暖材料。借助扫描电子显微镜、织物保温仪和全自动缩水率实验机等研究了静电场下羽绒与气凝胶粉末的分散机制和保暖效率。结果表明:在静电场的作用下,样品内SiO2气凝胶粉末均匀分散并吸附在绒丝上,相比于单一羽绒填充样品,气凝胶粉末替换部分羽绒后样品厚度由18 mm减少至11 mm,单位厚度克罗值提升了105.23%,证实羽绒与气凝胶粉末具有协同保暖效应。在轻薄型样品中,单一羽绒样品单位厚度克罗值为0.043 4 clo/mm,加入4.0 g的SiO2气凝胶粉末后,保暖材料的单位厚度克罗值最高达0.056 1 clo/mm,提升了29.26%;在极寒型样品中,单一羽绒样品单位厚度克罗值为0.028 6 clo/mm,加入12.0 g SiO2气凝胶粉末后,复合保暖材料的单位厚度克罗值高达0.039 7 clo/mm,提升了38.86%;复合保暖材料在水洗5次后质量损失仅有0.01 g,克罗值降低了0.02 clo,表现出优良的耐水洗性能。综合而言,与单一羽绒材料相比,羽绒/SiO2气凝胶复合保暖材料可在保证同等保暖效果的情况下有效降低材料厚度。

关键词: 羽绒, 二氧化硅气凝胶粉末, 保暖材料, 单位厚度克罗值, 静电场, 填充密度

Abstract:

Objective Thin and lightweight warmth keeping materials are one of the hot spots in the research of cold-proof clothing. Downs play an important role in conventional warmth keeping materials, but the coat bloating runs against people's pursuit of beauty and comfort. Silica (SiO2) aerogel has a thermal conductivity lower than 0.02 W/(m·K) at room temperature, which has a broad application prospect in the field of warmth. However, when aerogel powder is used as a filler for warmth keeping, uneven dispersion due to agglomeration appears to be problematic, in addition to the short durability of aerogel powder composites due to powder falling.

Method This study creates a stable electrostatic field using the inherent charge differences between polyester fibers and down. By integrating aerogel's ultralight properties with down's 3-D network structure, electrostatic forces precisely position aerogel particles, forming a uniformly structured thermal composite with enhanced warmth keeping synergy. The dispersion and adsorption state of silica aerogel powder inside the material, as well as the influence of down and aerogel powder filling amount on the warmth keeping properties of the samples and their optimization were specifically studied.

Results Observed using an optical microscope, it revealed that SiO2 aerogel powders and their aggregates were adsorbed on the surface of down filaments and uniformly distributed with the help of down filaments, which was consistent with the constructed model based on the electrostatic adsorption principle. The adsorption and uniform dispersion of the aerogel powder were successfully achieved, solving the problem of SiO2 aerogel powder on agglomeration when used as a filler. In the ultra-light samples, the Crowe values per unit thickness of the down/aerogel powder composite samples with the same mass were higher than those of the single down-filled samples, in which the Crowe values per unit thickness of the composite samples in the third group of samples were 105.23% higher than those of the single down, indicating that a synergistic warmth keeping effect of mixing the down with the SiO2 aerogel powder was achieved using the electrostatic field. In the cold-tolerant samples with the increase of SiO2 aerogel powder filling amount, the Crowe value per unit thickness of the down/aerogel powder composite samples showed a trend of increasing and then slowly decreasing. This is because the adsorption of down filaments on aerogel powder has a saturation value, and the Crowe value per unit thickness of the samples would reach the maximum value when powder saturation was reached. Cyclic washing resistance test showed that after washing for 5 cycles, the mass loss of the sample with the maximum filling volume in the light and thin sample and the extreme cold sample was 0.06 g and 0.08 g, respectively. Owing to the selection of high-density calendared anti-feather coating cloth for the sample, the overall tightness of the sample was good, and the internal hydrophobicity of the sample was maintained during the washing process, which further reduced the leakage of SiO2 aerogel powder. The addition of hydrophobic SiO2 aerogel powder makes the samples maintain good warmth keeping performance after repeated washing, and the samples demonstrated excellent washing resistance.

Conclusion The results showed that the adsorption of SiO2 aerogel powder was successfully achieved by using the electrostatic force generated by the friction between the down and the fabric, and the three-dimensional structure of the down was utilized to achieve the purpose of uniformly dispersing the aerogel powder. Compared with the single down-filled sample, the Crowe value per unit thickness of the sample increased by 105.23% with the addition of SiO2 aerogel powder, indicating that a synergistic effect exists in the interaction between down and aerogel powder. The sample filled with 10 g of SiO2 aerogel powder only lost 0.01 g of mass and 0.02 clo of Crowe value after washing for 5 cycles, and the warmth keeping effect was still well maintained after washing. In summary, the proposed down/aerogel powder warmth keeping composite material overcomes the problem of easy agglomeration of aerogel powder as a filler and reduces the thickness of the warmth keeping material on the basis of guaranteeing the warmth keeping effect, which provides a new way of thinking for the design and development of thin and light thermal material.

Key words: down, silica aerogel powder, warmth keeping material, crowe value per unit thickness, electrostatic field, filling density

中图分类号: 

  • TS959.16

表1

气凝胶粉末参数"

样品
编号
平均粒径/
μm
中间孔径/
nm
孔隙率/
%
生产公司
AG-1 10.0 42.98 81.01 深圳中凝科技
有限公司
AG-2 100.0 15.93 88.83 河北无针科技集团
有限公司
AG-3 20.0 59.88 86.23 苏州横球石墨烯
科技有限公司

图1

羽绒 /气凝胶复合材料制备流程图"

表2

极轻型样品羽绒/气凝胶粉末填充方案"

组别 羽绒填充量/g SiO2气凝胶粉末填充量/g
第1组 3.6 1.0
4.6 0.0
第2组 3.6 2.0
5.6 0.0
第3组 3.6 3.0
6.6 0.0

表3

轻薄型和极寒型样品羽绒/气凝胶粉末填充方案"

试样类型 羽绒填充量/g SiO2气凝胶粉末填充量/g 填充比例
轻薄型 8.0 0.0 4∶0
8.0 2.0 4∶1
8.0 4.0 4∶2
8.0 6.0 4∶3
8.0 8.0 4∶4
8.0 10.0 4∶5
极寒型 16.0 0.0 4∶0
16.0 4.0 4∶1
16.0 8.0 4∶2
16.0 12.0 4∶3
16.0 16.0 4∶4
16.0 20.0 4∶5

图2

3种SiO2气凝胶粉末性能表征"

图3

静电吸附机制验证"

图4

极轻型样品中羽绒和气凝胶粉末保暖有效性对比"

图5

羽绒/气凝胶复合材料保暖性能"

图6

羽绒/气凝胶复合材料耐水洗性能"

[1] YANG L, YAN H, LAM J C. Thermal comfort and building energy consumption implications: a review[J]. Applied Energy, 2013, 115: 164-173.
[2] YUNIKEWATY Y, DWI S. The role of green energy technologies development, carbon Finance, carbon tax and economic growth on environmental conditions in ASEAN countries[J]. International Journal of Energy Economics and Policy, 2023, 13(5): 558-565.
[3] APOSTOLOPOULOU-KALKAVOURA V, MUNIER P, BERGSTRöM L. Thermally insulating nanocellulose-based materials[J]. Advanced Materials, 2021, 33(28): 1-17.
[4] NAKAMURA K. Central circuitries for body temperature regulation and fever[J]. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 2011, 301: 1207-1228.
doi: 10.1152/ajpregu.00109.2011 pmid: 21900642
[5] KONDO N, SHIBASAKI M, AOKI K, et al. Function of human eccrine sweat glands during dynamic exercise and passive heat stress[J]. Journal of Applied Physiology, 2001, 90: 1877-1881.
pmid: 11299281
[6] HARDY J D, DUBOIS E F. Regulation of heat loss from the human body[J]. Proceedings of the National Academy of Sciences of the United States of America, 1937, 23: 624-631.
pmid: 16577831
[7] SHIBASAKI M, WILSON T E, CRANDALL C G. Neural control and mechanisms of eccrine sweating during heat stress and exercise[J]. Journal of Applied Physiology, 2006. DOI: 10.1002/zamm.200310061.
[8] ZHANG X, CHAO X, LOU L, et al. Personal thermal management by thermally conductive composites: a review[J]. Composites Communications, 2021, 23: 1-18.
[9] D'ALBA L, CARLSEN T H, ÁSGEIRSSON Á, et al. Contributions of feather microstructure to eider down insulation properties[J]. Journal of Avian Biology, 2017, 48(8): 1047-1088.
[10] VENKATESWARA RAO A, HARANATH D. Effect of methyltrimethoxysilane as a synthesis component on the hydrophobicity and some physical properties of silica aerogels[J]. Microporous and Mesoporous Materials, 1999, 30:267-273.
[11] SHEWALE P M, RAO A V, RAO A P. Effect of different trimethyl silylating agents on the hydrophobic and physical properties of silica aerogels[J]. Applied Surface Science, 2008, 254: 6902-6907.
[12] ZHAO S, SIQUEIRA G, DRDOVA S, et al. Additive manufacturing of silica aerogels[J]. Nature, 2020, 584: 387-392.
[13] LIU Z H, DING Y D, WANG F, et al. Thermal insulation material based on SiO2 aerogel[J]. Construction and Building Materials, 2016, 122: 548-555.
[14] GANONYAN N, BENMELECH N, BAR G, et al. Entrapment of enzymes in silica aerogels[J]. Materials Today, 2020, 33: 24-35.
[15] ASHRAF M A. Spectral and structural investigation of silica aerogels properties synthesized through several techniques[J]. Journal of Non-Crystalline Solids, 2021, 571: 1-7.
[16] STEPANIAN C J, GOULD G L, BEGAG R. Aerogel composite with fibrous batting: 2002094426[P]. 2002-07-18.
[17] WU H, CHEN Y, CHEN Q, et al. Synthesis of flexible aerogel composites reinforced with electrospun nanofibers and microparticles for thermal insulation[J]. Journal of Nanomaterials, 2013, 2013: 1-8.
[18] MAZROUEI-SEBDANI Z, KHODDAMI A, HADADZADEH H, et al. Synthesis and performance evaluation of the aerogel-filled PET nanofiber assemblies prepared by electro-spinning[J]. RSC Advances, 2015, 5(17): 12830-12842.
[19] YANG G, LIU X, LIPIK V. Evaluation of silica aerogel-reinforced polyurethane foams for footwear applications[J]. Journal of Materials Science, 2018, 53(13): 9463-9472.
[20] ZOU H, ZHANG Y, GUO L, et al. Quantifying the triboelectric series[J]. Nature Communications, 2019, 10(1): 1-9.
[21] ZOU H, ZHANG Y, GUO L, et al. Quantifying the triboelectric series[J]. Nature Communications, 2019, 10(1): 1-9.
[22] 王琼. 羽绒服材料的配伍变化对保暖性的影响[D]. 上海: 东华大学, 2016:33-39.
WANG Qiong. Effect of compounding changes of down jacket materials on warmth retention[D]. Shanghai: Donghua University, 2016:33-39.
[23] 高晶. 羽绒纤维及其集合体结构和性能的研究[D]. 上海: 东华大学, 2006:49-51.
GAO Jing. Research on the structure and properties of down fibers and their aggregates[D]. Shanghai: Donghua University, 2006:49-51.
[24] 王革辉, 赵媛媛. 洗涤对不同絮料保暖性的影响[J]. 上海纺织科技, 2014, 42 (10): 52-55.
WANG Gehui, ZHAO Yuanyuan. Effect of washing on warmth retention of different wadding materials[J]. Shanghai Textile Science and Technology, 2014, 42 (10): 52-55.
[1] 卜凡, 应丽丽, 李长龙, 王宗乾. 羽绒在乳酸/半胱氨酸低共熔溶剂中的溶解行为及其机制[J]. 纺织学报, 2023, 44(10): 24-30.
[2] 谭林立, 秦柳, 李英儒, 邓伶俐, 谢知音, 李时东. 基于超临界二氧化碳的高效低阻聚丙烯熔喷纤维制备及其性能[J]. 纺织学报, 2023, 44(01): 87-92.
[3] 万颖萍, 王宗乾, 王英沣, 杨海伟, 吴开明, 谢伟. 抗菌羽绒的短流程制备及其性能[J]. 纺织学报, 2023, 44(01): 149-155.
[4] 吴佳玥, 吴巧英. 羽绒制品热传递的有限元仿真[J]. 纺织学报, 2022, 43(11): 154-162.
[5] 张文欢, 江舒, 李俊. 羽绒服装系统的面积因子预测及适用性分析[J]. 纺织学报, 2022, 43(11): 148-153.
[6] 吴黛唯, 黄家成, 王云仪. 服装形变对羽绒服隔热能力的影响[J]. 纺织学报, 2022, 43(09): 167-174.
[7] 俞琰, 王西朝, 张瑞云, 李蓉丽, 程隆棣. 云南野生火草纤维及其绒网的结构与性能[J]. 纺织学报, 2022, 43(04): 10-14.
[8] 应丽丽, 李长龙, 王宗乾, 王邓峰, 吴开明, 谢伟, 程欢. 植酸作用下锆离子修饰羽绒及其保温性能[J]. 纺织学报, 2020, 41(10): 94-100.
[9] 张凌云, 钱晓明, 邹驰, 邹志伟. SiO2气凝胶/聚酯-聚乙烯双组分纤维复合保暖材料的制备及其性能[J]. 纺织学报, 2020, 41(08): 22-26.
[10] 马颜雪, 王世娜, 李毓陵, 温润. 方格立衬结构机织物的一次成形设计实践[J]. 纺织学报, 2020, 41(06): 42-47.
[11] 申莹 邓炳耀 刘庆生 夏赛男 姚鹏飞. 不同填充密度的梯度结构复合滤材的制备及其性能[J]. 纺织学报, 2017, 38(07): 23-27.
[12] 曹继鹏 孙鹏子. 棉结在静电场中的运动规律[J]. 纺织学报, 2013, 34(8): 33-0.
[13] 万旺军 邓同乐 计芬芬 葛建 付贤树 邬佳丽. 羽毛绒种类鉴定及气味检测方法研究[J]. 纺织学报, 2013, 34(3): 15-19.
[14] 周岚;汤利桥;俞杭芳;邵建中;. 灰色羽绒的漂白技术[J]. 纺织学报, 2011, 32(1): 59-66.
[15] 吴刚;赵珊红;王华雄;吴俭俭;郭方龙;王力君;谢维斌;宋保国;叶庆富. 加速溶剂萃取-高效液相色谱测定羽绒羽毛中的烷基苯酚与聚氧乙烯醚[J]. 纺织学报, 2010, 31(3): 72-77.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!