纺织学报 ›› 2025, Vol. 46 ›› Issue (09): 104-111.doi: 10.13475/j.fzxb.20241107501
朱耀麟1, 李政1(
), 张强2, 陈鑫1, 陈锦妮1, 张洪松3
ZHU Yaolin1, LI Zheng1(
), ZHANG Qiang2, CHEN Xin1, CHEN Jinni1, ZHANG Hongsong3
摘要:
在不同废旧纺织品中当羊绒或羊毛含量差异较小的情况下,传统检测模型在识别羊绒和羊毛含量时准确率和精度方面表现不佳。为解决这个问题,提出了一种基于近红外光谱和多特征网络的羊绒及羊毛定量检测方法。利用深度学习对羊绒、羊毛的近红外光谱进行分析,通过卷积神经网络(CNN)和长短时记忆网络(LSTM)提取光谱数据的特征吸收峰,同时结合多层感知机(MLP)进行纤维混合含量的定量检测。模型的“黑盒”特征提取过程中,通过卷积层和门控序列,不仅可以提取光谱中的单一波长,还能自动捕捉光谱数据中的连续吸收峰,显著提高了模型的识别精度和准确率,避免了人为特征选择的主观性和复杂性,且发现了人工可能忽略的吸收峰间的时序关系。实验结果表明,该模型在羊绒和羊毛含量检测中的R2值可达(0.945 8±0.029 5)。该方法能够通过自动学习数据中的关键特征,有效提升传统回归模型的检测性能。
中图分类号:
| [1] |
LAURA Navone, KAYLEE Moffitt, KAI-ANDERS Hansen, et al. Closing the textile loop: enzymatic fibre separation and recycling of wool/polyester fabric blends[J]. Waste Management, 2020, 102:149-160.
doi: 10.1016/j.wasman.2019.10.026 |
| [2] | 金美菊, 阮勇, 李翔, 等. 基于基因技术的羊绒与羊毛纤维定性鉴别方法[J]. 纺织学报, 2012, 33(8): 19-23. |
| JIN Meiju, RUAN Yong, LI Xiang, et al. Identification of cashmere and wool by genetic technology[J]. Journal of Textile Research, 2012, 33(8): 19-23. | |
| [3] |
LUO Junli, LU Kai, CHEN Yonggang, et al. Automatic identification of cashmere and wool fibers based on microscopic visual features and residual network model[J]. Micron, 2021, 143, 103023.
doi: 10.1016/j.micron.2021.103023 |
| [4] |
XING Wenyu, LIU Yiwen, DENG Na, et al. Automatic identification of cashmere and wool fibers based on the morphological features analysis[J]. Micron, 2020, 128,102768.
doi: 10.1016/j.micron.2019.102768 |
| [5] | ZHU Yaolin, DUAN Jiameng, WU Tong. Animal fiber imagery classification using a combination of random forest and deep learning methods[J]. Journal of Engineered Fibers and Fabrics, 2021. DOI: 10.1177/15589250211009333. |
| [6] | ZHU Yaolin, WANG Xingze, GU Meihua, et al. Application of unsupervised feature selection in cashmere and wool fiber recognition[J]. Journal of Natural Fibers, 2024, 21(1), 2311306. |
| [7] | ROLA H H, THOMAS B. Trends in artificial intelligence, machine learning, and chemometrics applied to chemical data[J]. Analytical Science Advances, 2021,2628-5452. |
| [8] |
YVES Roggo, PASCAL Chalus, LENE Maurer, et al. A review of near infrared spectroscopy and chemometrics in pharmaceutical technologies[J]. Journal of Pharmaceutical and Biomedical Analysis, 2007, 44(3): 683-700.
pmid: 17482417 |
| [9] |
ZHOU Jinfeng, WANG Rongwu, WU Xiongying. Fiber-content measurement of wool-cashmere blends using near-infrared spectroscopy[J]. Applied Spectroscopy, 2017, 71(10): 2367-2376.
doi: 10.1177/0003702817713480 pmid: 28537417 |
| [10] |
CHEN X, LAN Q, ZHU Y, et al. Non-destructive identification of wool and cashmere fibers based on cascade optimizations of interval-wavelength selection using NIR spectroscopy[J]. Journal of Natural Fibers, 2024, 21(1): 2409877.
doi: 10.1080/15440478.2024.2409877 |
| [11] |
ZHU Y, ZHANG Y, CHEN X, et al. Non-destructive identification of virgin cashmere and chemically modified wool fibers based on fractional order derivative and improved wavelength extraction algorithm using nir spectroscopy and chemometrics[J]. Journal Of Natural Fibers, 2024, 21(1), 2409901.
doi: 10.1080/15440478.2024.2409901 |
| [12] |
SUN Xiting, YUAN Hongfu, SONG Chunfeng, et al. A novel drying-free identification method of cashmere textiles by NIR spectroscopy combined with an adaptive representation learning classification method[J]. Microchemical Journal, 2019, 149,104018.
doi: 10.1016/j.microc.2019.104018 |
| [13] | FANG X, XIN B, ZHAN Z, et al. Classification of wool and cashmere fiber based on LBP and DWT features: performance comparison of random forest, AdaBoost, and KNN classifiers[J]. The Journal of The Textile Institute, 2025,1-13. |
| [14] |
GONG Ping, FENG Yuchao, WEI Peiling, et al. Rapid identification of scoured protein fibers using near-infrared spectroscopy with machine learning: a comparison of handheld and benchtop devices[J]. Microchemical Journal, 2025, 208,112398.
doi: 10.1016/j.microc.2024.112398 |
| [1] | 郑小虎, 杜思淇, 刘永青, 王健, 陈峰. 基于一维卷积神经网络的棉纱线质量预测[J]. 纺织学报, 2025, 46(09): 120-127. |
| [2] | 张晓婷, 赵鹏宇, 潘如如, 高卫东. 基于深度特征融合的格子织物图像检索方法[J]. 纺织学报, 2025, 46(08): 89-95. |
| [3] | 王青, 姜越夫, 赵恬恬, 赵世航, 刘甲怡. 基于深度学习的纱管位姿估计方法及抓取实验[J]. 纺织学报, 2025, 46(07): 217-226. |
| [4] | 韩智慧, 万爱兰, 洪亮, 高丽忠, 夏风林. 羊毛纱经编整经损伤及其有限元模拟[J]. 纺织学报, 2025, 46(07): 103-110. |
| [5] | 顾孟尚, 张宁, 潘如如, 高卫东. 结合频域卷积模块的机织物图像疵点目标检测[J]. 纺织学报, 2025, 46(05): 159-168. |
| [6] | 朱梦慧, 葛美彤, 董智佳, 丛洪莲, 马丕波. 纬编双面羊毛/涤纶交织物的结构与热湿性能评价[J]. 纺织学报, 2025, 46(05): 179-185. |
| [7] | 朱大全, 崔志华, 高普, 朱杰, 张斌, 朱跃文, 陈维国. 丝光羊毛的芳伯胺化修饰及其室温重氮偶合染色[J]. 纺织学报, 2025, 46(05): 186-194. |
| [8] | 朱文硕, 薛元, 孙显强, 薛惊理, 金光. 基于七基色纤维的羊毛混色纱全色域配色[J]. 纺织学报, 2025, 46(04): 71-80. |
| [9] | 白雨薇, 徐健, 朱耀麟, 丁展博, 刘晨雨. 基于改进YOLOv8的梳棉机棉网上棉结检测方法[J]. 纺织学报, 2025, 46(03): 56-63. |
| [10] | 李欢, 孟文俊, 张京, 姜哲, 卫艺敏, 周曼, 王强. 低共熔溶剂体系中的羊毛靛蓝染料染色[J]. 纺织学报, 2025, 46(03): 123-130. |
| [11] | 郭庆, 毛阳顺, 任亚杰, 刘济民, 王怀芳, 朱平. 基于漆酶一步催化法的羊毛织物原位染色及阻燃功能化[J]. 纺织学报, 2025, 46(02): 161-169. |
| [12] | 黄小源, 侯珏, 杨阳, 刘正. 基于改进深度学习模型的高精度服装样板自动生成[J]. 纺织学报, 2025, 46(02): 236-243. |
| [13] | 蔡丽玲, 王梅, 邵一兵, 陈炜, 曹华卿, 季晓芬. 基于改进堆叠生成对抗网络的传统汉服智能定制推荐[J]. 纺织学报, 2024, 45(12): 180-188. |
| [14] | 刘燕萍, 郭佩瑶, 吴莹. 面向织物疵点检测的深度学习技术应用研究进展[J]. 纺织学报, 2024, 45(12): 234-242. |
| [15] | 史晶晶, 杨恩龙. 喂入提前量对棉/羊毛段彩纱结构及性能的影响[J]. 纺织学报, 2024, 45(12): 67-73. |
|
||