Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (01): 165-173.doi: 10.13475/j.fzxb.20181206309

• Machinery & Accessories • Previous Articles     Next Articles

Research on knitting machine interconnection and interoperability structure based on industrial internet

WANG Songsong1,2, PENG Laihu1,2, DAI Ning1,2, SHEN Chunya1,2, HU Xudong1,2()   

  1. 1. Engineering Research Center of Modern Textile Machinery & Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Key Laboratory of Modern Textile Machinery & Technology of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2018-12-28 Revised:2019-07-23 Online:2020-01-15 Published:2020-01-14
  • Contact: HU Xudong E-mail:xdhu@zstu.edu.cn

Abstract:

In order to realize the interconnection and intercommunication of knitting machine from the bottom layer to the cloud, under the drive of the national intelligent manufacturing standard system, based on the network, data, security and other factors, the internet model of knitting machine industry was constructed, and the ubiquitous connection and logo of knitting machine was discussed. By analyzing the characteristics of OT+IT network, the network structure and bandwidth based on ″internet +″ are designed, and the future network is discussed. Combining the reliability of heavyweight communication protocol and the convenience of lightweight communication protocol, a special protocol for knitting machine interconnection is designed. The structure and semantics of the message are standardized. The communication guarantee and service quality assurance mechanism are established to make the message. Be sure to be reachable. The verification platform for the interconnection and intercommunication of the knitting machine industry was designed. The terms of the industrial internet interconnection network and communication protocol of knitting machines such as flat knitting machines, circular knitting machines and warp knitting machines are verified, and the verification, revision and re-verification processes are guaranteed.

Key words: knitting machine, intelligent manufacturing, interconnection and interoperability, industrial internet

CLC Number: 

  • TS18

Fig.1

Industrial internet model of knitting machine"

Fig.2

OT+IT knitting machine network structure"

Fig.3

Knitting machine network structure based on ″internet+″"

Fig.4

Future network structure of knitting machine"

Fig.5

Design mechanism of interconnection protocol for knitting machine"

Tab.1

Message structure"

报文结构 数据类型 含义
固定报头 UInt16 通信序号
DateTime 时间戳
Guid 请求方ID
Guid 应答方ID
UInt32 报文内容总长度
功能代码 1Byte 功能类型代码
1Byte 子功能代码
参数(代码) 可变长度 参数(代码)

Tab 2

Data type of knitting machine"

序号 名称 字节数 描述
1 Boolean 1 2个状态的逻辑值(true或false)
2 SByte 1 -128和127间的整数值
3 Byte 1 0和256间的整数值
4 Int16 2 -32 768和32 767间的整数值
5 UInt16 2 0和65 535间的整数值
6 Int32 4 -2 147 483 648和2 147 483 647间的整数值
7 UInt32 4 0和4 294 967 295间的整数值
8 Float 4 IEEE单精度(32位)浮点值
9 Double 8 IEEE双精度(64位)浮点值
10 String 一系列Unicode字符
11 DateTime 8 时间实例
12 Guid 16 16字节的值,可被用作全球唯一标识符
13 XmlElement XML元素

Fig.6

Semantic function structure of knitted machine message"

Fig.7

Parameter structure of knitted machine message"

Tab.3

Communication response parameter format"

序号 请求方-参数代码 应答方-参数(代码)值
1 参数代码1、参数代码2、…、参数代码N 参数值1、参数值2、…、参数值N
2 参数代码1、参数值1,参数代码2、参数值2,…,参数代码N、参数值N 参数代码1,参数值1,参数代码2、参数值2,…,参数代码N、参数值N
3 参数块代码 按参数块序列的参数值1、参数值2、…、参数值N

Fig.8

Knitting machine interoperability and interoperability verification laboratory layout"

Fig.9

Verification process for interconnection and interoperability of knitting machine"

[1] 李清, 唐骞璘, 陈耀棠, 等. 智能制造体系架构、参考模型与标准化框架研究[J]. 计算机集成制造系统, 2018,24(3):539-549.
LI Qing, TANG Qianlin, CHEN Yaotang, et al. Smart manufacturing standardization: reference model and standards framework[J]. Computer Integrated Manufacturing Systems, 2018,24(3):539-549.
[2] 缪旭红, 赵帅权, 徐存东, 等. 纺织制造执行系统开发与应用中的关键技术[J]. 棉纺织技术, 2015,43(6):37-40.
MIAO Xuhong, ZHAO Shuaiquan, XU Cundong, et al. Key technology of textile manufacture execution system development and application[J]. Cotton Textile Technology, 2015,43(6):37-40.
[3] 蒋高明, 张吉生. 互联网针织关键技术开发与应用[J]. 纺织导报, 2016(7):53-56.
JIANG Gaoming, ZHANG Jisheng. Development and application of key technologies for internet knitting[J]. China Textile Leader, 2016(7):53-56.
[4] 王胡成, 徐晖, 程志密, 等. 5G网络技术研究现状和发展趋势[J]. 电信科学, 2015,31(9):156-162.
WANG Hucheng, XU Hui, CHENG Zhimi, et al. Current research and development trend of 5G network technologies[J]. Telecommunications Science, 2015,31(9):156-162.
[5] 吴文君, 姚海鹏, 黄韬, 等. 未来网络与工业互联网发展综述[J]. 北京工业大学学报, 2017,43(2):163-172.
WU Wenjun, YAO Haipeng, HUANG Tao, et al. Survey of development on future networks and industrial internet[J]. Journal of Beijing University Technology, 2017,43(2):163-172.
[6] 蒋高明, 高哲, 高梓越. 针织智能制造研究进展[J]. 纺织学报, 2017,38(10):178-183.
JIANG Gaoming, GAO Zhe, GAO Ziyue. Research advance of knitting intelligent manufacturing for knitting technology[J]. Journal of Textile Research, 2017,38(10):178-183.
[7] LI Jianqiang, YU Fei-richard, DENG Genqiang, et al. Industrial internet: a survey on the enabling technologies, applications, and challenges[J]. IEEE Communications Surveys & Tutorials, 2017,19(3):1504-1526.
[8] ALA Al-fuqaha, MOHSEN Guizani, MEHDI Mohammadi, et al. Internet of things: a survey on enabling technologies, protocols, and applications[J]. IEEE Communications Surveys & Tutorials, 2015,17(4):2347-2376.
[9] XU Lida, HE Wu, LI Shancang. Internet of things in industries: a survey[J]. IEEE Transactions on Industrial Informatics, 2014,10(4):2233-2243.
[10] 钱志鸿, 王义君. 物联网技术与应用研究[J]. 电子学报, 2012,40(5):1023-1029.
QIAN Zhihong, WANG Yijun. IoT technology and application[J]. Acta Electronica Sinica, 2012,40(5):1023-1029.
[11] 陈海明, 崔莉, 谢开斌. 物联网体系结构与实现方法的比较研究[J]. 计算机学报, 2013,36(1):168-188.
CHEN Haiming, CUI Li, XIE Kaibing. A comparative study on architectures and implementation methodologies of internet of things[J]. Chinese Journal of Computer, 2013,36(1):168-188.
[12] 胡毅, 于东, 刘明烈. 工业控制网络的研究现状及发展趋势[J]. 计算机科学, 2010,37(1):23-27,46.
HU Yi, YU Dong, LIU Minglie. Present research and developing trends on industrial control network[J]. Computer Science, 2010,37(1):23-27,46.
[13] 陈磊, 冯冬芹, 金建祥, 等. 以太网在工业应用中的实时特性研究[J]. 浙江大学学报(工学版), 2004(6):19-24.
CHEN Lei, FENG Dongqin, JIN Jianxiang, et al. Study on real-time characteristics of ethernet in industrial application[J]. Journal of Zhejiang Univer-sity (Engineering Science Edition), 2004(6):19-24.
[14] 陆俊, 李子, 朱炎平, 等. 智能配用电信息采集业务通信带宽预测[J]. 电网技术, 2016,40(4):1277-1282.
LU Jun, LI Zi, ZHU Yanping, et al. Communication bandwidth prediction for information gathering services in power distribution and utilization of smart grid[J]. Power System Technology, 2016,40(4):1277-1282.
[15] SCHLEIPEN Miriam, GILANI Syed-shiraz, BISCHOFF Tino, et al. OPC UA & industrie 4.0-enabling technology with high diversity and variability[J]. Procedia CIRP, 2016,57:315-320.
[16] HWANG Hyun-cheon, PARK Jisu, SHON Jin-gon. Design and implementation of a reliable message transmission system based on MQTT protocol in IoT[J]. Wireless Personal Communications, 2016,91(4):1765-1777.
[17] 黄明. 轻量级工业物联网控制网络协议研究[J]. 信息技术与标准化, 2017(9):59-62.
HUANG Ming. Research of lightweight control network protocols for industrial internet of things[J]. Information Technology & Standardization, 2017 (9):59-62.
[18] 毛燕琴, 沈苏彬. 物联网信息模型与能力分析[J]. 软件学报, 2014,25(8):1685-1695.
MAO Yanqin, SHEN Subin. Information model and capability analysis of the internet of things[J]. Journal of Software, 2014,25(8):1685-1695.
[19] 吴振强, 周彦伟, 马建峰. 物联网安全传输模型[J]. 计算机学报, 2011,34(8):1351-1364.
WU Zhenqiang, ZHOU Yanwei, MA Jianfeng. A security transmission model for internet of things[J]. Chinese Journal of Computers, 2011,34(8):1351-1364.
[1] GUO Weidong, XIA Fenglin, ZHANG Qi. Influencing factors on high speed of electronic shogging system in warp knitting machines [J]. Journal of Textile Research, 2021, 42(01): 162-166.
[2] ZHAO Boyu, LIANG Xinhua, CONG Honglian. Structural modeling and process practice of three-dimensional fully fashioned face masks woven by computerized flat knitting machine [J]. Journal of Textile Research, 2020, 41(12): 59-65.
[3] DAI Ning, PENG Laihu, HU Xudong, CUI Ying, ZHONG Yaosen, WANG Yuefeng. Method for testing natural frequency of weft knitting needles in free state [J]. Journal of Textile Research, 2020, 41(11): 150-155.
[4] LI Dongdong, ZHANG Chengjun, ZUO Xiaoyan, ZHANG Chi, LI Hongjun, ZHOU Xiangyang. Study on magnetic field distribution in permanent magnetic needle drive using hybrid magnetic suspension needle [J]. Journal of Textile Research, 2020, 41(09): 136-142.
[5] LIU Bo, CONG Honglian. Research and implementation of flat-bed knitting process model of fully formed suit [J]. Journal of Textile Research, 2020, 41(07): 53-58.
[6] WANG Songsong, PENG Laihu, HU Xudong. Knitting machine information modeling under OPC unified architecture framework [J]. Journal of Textile Research, 2020, 41(05): 167-175.
[7] LIU Bo, CONG Honglian. Process design and knitting principle of one-piece casual suits based on four-needle-bed flat knitting machine [J]. Journal of Textile Research, 2020, 41(04): 129-134.
[8] SUN Shuai, MIAO Xuhong, ZHANG Qi, WANG Jin. Yarn tension fluctuation on high-speed warp knitting machine [J]. Journal of Textile Research, 2020, 41(03): 51-55.
[9] WANG Jiandong, XIA Fenglin, LI Yalin, ZHAO Yuning. Optimal sliding mode control of electronic transverse servo for comb bar of warp knitting machine [J]. Journal of Textile Research, 2020, 41(02): 143-148.
[10] WANG Pan, WU Zhiming. Transverse knitting method and forming process of fully formed sweater [J]. Journal of Textile Research, 2019, 40(10): 73-78.
[11] ZHANG Chengjun, YOU Liangfeng, ZUO Xiaoyan, ZHANG Chi, ZHU Li. Magnetic driving design and modeling for knitting needles of computerized flat knitting machine [J]. Journal of Textile Research, 2019, 40(09): 180-185.
[12] XU Yunlong, XIA Fenglin. Influence of interval distance of double-needle bed warp-knitting machine on yarn demand [J]. Journal of Textile Research, 2019, 40(08): 151-156.
[13] ZHANG Qi, WEI Li, LUO Cheng, XIA Fenglin, JIANG Gaoming. Double jacquard control system of warp knitting machine based on dual bus architecture [J]. Journal of Textile Research, 2019, 40(07): 145-150.
[14] XU Yunlong, XIA Fenglin. Influence of guide-bar swing on instantaneous yarn demand and yarn tension on double needle bar warp knitting machine [J]. Journal of Textile Research, 2019, 40(06): 106-110.
[15] WANG Pan, WU Zhiming. Principle and application of partial knitting on fully formed sweater [J]. Journal of Textile Research, 2019, 40(05): 41-46.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!