Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (09): 83-89.doi: 10.13475/j.fzxb.20201006608

• Dyeing and Finishing & Chemicals • Previous Articles     Next Articles

Ultrasonic-assisted chemical degumming process for making pineapple leaf fiber

HE Junyan1,2, LI Mingfu1,2(), LIAN Wenwei1,2, HUANG Tao1,2, ZHANG Jin1,2   

  1. 1. Agricultural Machinery Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524091, China
    2. Key Laboratory of Agricultural Equipment for Tropical Crops, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhanjiang, Guangdong 524091, China
  • Received:2020-10-28 Revised:2021-05-24 Online:2021-09-15 Published:2021-09-27
  • Contact: LI Mingfu E-mail:232379481@qq.com

Abstract:

In order to degumming pineapple leaves efficiently, ultrasonic cleaning technology and chemical degumming technology were used in conjuction, and the factors of ultrasonic frequency, ultrasonic treatment time and ultrasonic treatment temperature were optimized by the response surface methodology. The structure and properties of fiber were characterized by scanning electron microscope, fourier infrared spectroscopy and thermal analysis during the degumming process. The results show that the optimal process conditions for the ultrasonic-assisted chemical degumming of pineapple leaf fibers are as follows: ultrasonic frequency of 53 kHz, ultrasonic treatment time of 35 min, and ultrasonic treatment temperature of 53 ℃. Under the optimized conditions, the fiber residual gum rate was 13.8%, and the fiber breaking strength was 4.2 cN/dtex, which is basically consistent with the theoretical value, meeting the spinning requirements. The order of the influence of each factor on the residual gum rate and breaking strength of the fiber is: ultrasonic frequency, ultrasonic treatment time, and ultrasonic treatment temperature. The ultrasonic treatment helps the removal of hemicellulose and ligninon, has little damage to the cellulose molecular chain, and has little effect on thermal performance.

Key words: pineapple leaf fiber, responsive surface methodology, ultrasonic, chemical degumming, residual gum rate, breaking strength

CLC Number: 

  • TS102.1

Tab.1

Box-Behnken's central combination factor level"

水平 A
超声波频率/kHz
B
超声波处理时间/min
C
超声波处理温度/℃
-1 35 20 40
0 53 40 60
1 80 60 80

Tab.2

Effect of ultrasonic frequency on residual gum rate and breaking strength of degummed pineapple leaf fiber"

超声波频率/kHz 残胶率/% 断裂强度/(cN·dtex-1)
对照组 19.83±3.24 5.43±1.21
35 15.21±2.23 3.68±0.65
53 16.32±1.54 4.73±0.45
80 18.59±2.89 5.03±0.73

Tab.3

Effect of ultrasonic treatment time on residual gum rate and breaking strength of degummed pineapple leaf fiber"

超声波处理时间/min 残胶率/% 断裂强度/(cN·dtex-1)
对照组 19.83±3.24 5.43±1.21
20 16.21±1.55 5.05±1.03
40 15.32±2.28 4.56±0.57
60 15.59±1.76 3.66±0.73
80 15.62±2.24 3.78±0.42

Tab.4

Effect of ultrasonic treatment temperature on residual gum rate and breaking strength of degummed pineapple leaf fiber"

超声波处理温度/℃ 残胶率/% 断裂强度/(cN·dtex-1)
对照组 19.83±3.24 5.43±1.21
20 18.57±1.93 5.58±0.85
40 16.43±2.04 4.45±0.62
60 13.88±1.13 4.36±1.31
80 14.59±2.19 4.69±0.67

Tab.5

Response surface experimental design and results"

试验号 A B C 残胶率/% 断裂强度/(cN·dtex-1)
1 0 1 1 13.58 3.37
2 0 0 0 12.83 4.35
3 0 0 0 13.09 3.99
4 0 -1 1 15.62 4.82
5 1 0 -1 16.65 4.83
6 -1 1 0 12.38 2.85
7 1 1 0 15.85 3.65
8 0 1 -1 13.89 3.68
9 1 -1 0 17.86 5.18
10 0 0 0 12.67 4.61
11 1 0 1 15.85 4.47
12 0 0 0 12.85 4.06
13 0 -1 -1 16.23 5.07
14 -1 -1 0 13.06 3.23
15 -1 0 1 12.27 3.18
16 -1 0 -1 12.64 3.63
17 0 0 0 12.41 3.88

Tab.6

Model credibility analysis"

响应值 平均值 R2 校正后的R2 变异系数
残胶率 14.10 0.987 2 0.970 7 2.20
断裂强度 4.05 0.939 7 0.862 1 6.46

Tab.7

Analysis of variance for response surface results"

响应值 方差来源 平方和 自由度 均方 F P
残胶率 模型 51.87 9 5.76 59.80 <0.000 1
A 31.44 1 31.44 326.25 <0.000 1
B 6.25 1 6.25 64.83 <0.000 1
C 0.55 1 0.55 5.67 0.048 9
AB 0.44 1 0.44 4.59 0.069 4
AC 0.05 1 0.05 0.48 0.510 9
BC 0.02 1 0.02 0.23 0.643 7
A2 2.50 1 2.50 25.90 0.001 4
B2 6.55 1 6.55 67.99 <0.000 1
C2 2.78 1 2.78 28.84 0.001 0
残差 0.67 7 0.10
失拟项 0.42 3 0.14 2.24 0.226 3
纯误差 0.25 4 0.06
总离差 52.54 16
模型 7.46 9 0.83 12.12 0.001 7
断裂强度 A 3.43 1 3.43 50.19 0.000 2
B 2.82 1 2.82 41.25 0.000 4
C 0.23 1 0.23 3.43 0.106 4
AB 0.33 1 0.33 4.84 0.063 8
AC 0.00 1 0.00 0.03 0.868 2
BC 0.00 1 0.00 0.01 0.911 9
A2 0.46 1 0.46 6.67 0.036 4
B2 0.06 1 0.06 0.91 0.372 1
C2 0.13 1 0.13 1.96 0.204 0
残差 0.48 7 0.07
失拟项 0.12 3 0.04 0.47 0.720 5
纯误差 0.35 4 0.09
总离差 7.94 16

Fig.1

Effects of interaction of ultrasonic frequency, ultrasonic treatment time and ultrasonic treatment temperature on residual gum rate. (a)Ultrasonic frequency and ultrasonic treatment time;(b)Ultrasonic frequency and ultrasonic treatment temperature; (c)Ultrasonic treatment time and ultrasonic treatment temperature"

Fig.2

Effects of interaction between ultrasonic treatment frequency, ultrasonic treatment time and ultrasonic treatment temperature on breaking strength. (a)Ultrasonic frequency and ultrasonic treatment time;(b)Ultrasonic frequency and ultrasonic treatment temperature;(c)Ultrasonic treatment time and ultrasonic treatment temperature"

Fig.3

SEM images of different processed pineapple leaf fibers(×1 000). (a)Untread fiber;(b)Pretreated fiber by ultrasound and alkali;(c)Degummed fiber"

Fig.4

FT-IR spectra of different processed pineapple leaf fibers"

Fig.5

TG and DTG curves of different processed pineapple leaf fibers"

Fig.6

DSC curves of different processed pineapple leaf fibers"

[1] ACTIS G G, GIANSETTI M, PEZZIN A, et al. Use of the ultrasonic cavitation in wool dyeing process: effect of the dye-bath temperature[J]. Ultrasonics Sonochemistry, 2017 (35):276-284.
[2] KHATRI M, AHMED F, JATOI A W, et al. Ultrasonic dyeing of cellulose nanofibers[J]. Ultrasonics Sonochemistry, 2016(31):350-354.
[3] LI C H, LIU S Y, SONG Y, et al. A facile and eco-friendly method to extract apocynum venetum fibers using microwave-assisted ultrasonic degumming[J]. Industrial Crops & Products, 2020(151):112443.
[4] 任燕, 邢建伟, 徐成书, 等. 超声波预处理在罗布麻生物脱胶工艺中的应用[J]. 印染, 2018(24):22-25.
REN Yan, XING Jianwei, XU Chengshu, et al. Application of ultrasonic wave pretreatment to bio-degumming process of apocynum venetum[J]. China Dyeing & Finishing, 2018(24):22-25.
[5] 刘恩平, 郭安平, 郭运玲. 菠萝叶纤维酶法脱胶技术[J]. 纺织学报, 2006, 27(12):41-43.
LIU Enping, GUO Anping, GUO Yunling. Study on enzymatic degumming of pineapple leaf fiber[J]. Journal of Textile Research, 2006, 27(12):41-43.
doi: 10.1177/004051755702700106
[6] 崔运花. 超声波技术在苎麻纤维预处理中的应用[J]. 纺织学报, 1998, 19(6):43-44.
CUI Yunhua. Application of ultrasonic technique in the pretreatment of ramie fiber[J]. Journal of Textile Research, 1998, 19(6):43-44.
doi: 10.1177/004051754901900106
[7] 张晓, 韩光亭, 张元明, 等. 基于闪爆-超声波联合作用的红麻精干麻制备[J]. 生物工程学报, 2014, 30(5):734-742.
ZHANG Xiao, HAN Guangting, ZHANG Yuanming, et al. Degumming of kenaf fibers by combining steam explosion with ultrasonic treatment[J]. Chinese Journal of Biotechnology, 2014, 30(5):734-742.
[8] 封权. 微波超声波协同预处理对大麻脱胶的影响研究[D]. 长春:长春工业大学, 2013:13-14.
FENG Quan. The study of the effects of the microwave-ultrasonic synergistic pretreatment to hemp fiber unglued[D]. Changchun: Changchun University of Technology, 2013:13-14.
[9] 汪澜, 姜志新, 严峻. 超声波处理对棉纤维结构与性能的影响[J]. 纺织学报, 2006, 27(10):77-79.
WANG Lan, JIANG Zhixin, YAN Jun. Effect of ultrasonic treatment on the structure and properties of cotton fibers[J]. Journal of Textile Research, 2006, 27(10):77-79.
[10] 杨英贤. 罗布麻超声波脱胶工艺研究[D]. 青岛:青岛大学, 2006:26-27.
YANG Yingxian. Research on apocynum venetum degumming with ultrasonic[D]. Qingdao: Qingdao University, 2006:26-27.
[11] WANG Z M, CHEUNG Y C, LEUNG P H, et al. Ultrasonic treatment for improved solution properties of a high-molecular weight exopolysaccharide produced by a medicinal fungus[J]. Bioresource Technology, 2010 (101):5517-5522.
[12] WU T Y, GUO N G, TEH C Y, et al. Advances in ultrasound technology for environmental remediation[M]. [s.l.]:Springer Science & Business Media, 2012:5-12.
[13] 何俊燕, 李明福, 张劲, 等. 改性菠萝叶纤维结构及其吸附甲醛性能[J]. 纺织学报, 2019, 40(5):1-6.
HE Junyan, LI Mingfu, ZHANG Jin, et al. Structure and formaldehyde adsorption properties of modified pineapple leaf fiber[J]. Journal of Textile Research, 2019, 40(5):1-6.
doi: 10.1177/004051757004000101
[14] 高金花, 熊刚, 崔卫钢, 等. 菠萝叶纤维的脱胶工艺探讨[J]. 针织工业, 2006(5):23-26.
GAO Jinhua, XIONG Gang, CUI Weigang, et al. A research on the degumming technology of the pineapple leave fibers[J]. Knitting Industries, 2006(5):23-26.
[15] 汪乐, 高可, 刘雪婷, 等. 菠萝叶纤维物理生物联合脱胶工艺探讨及其性能分析[J]. 纺织科学与工程学报, 2018, 35(2):60-64.
WANG Le, GAO Ke, LIU Xueting, et al. Exploration on physical and biological joint degumming technology of pineapple leaf fiber and its properties analysis[J]. Journal of Textile Science and Engineering, 2018, 35(2):60-64.
[16] 张明超. 超声清洗影响因素与空化场研究[D]. 西安:陕西师范大学, 2013:22-26.
ZHANG Mingchao. Research on influencing factors and cavitation field of ultrasonic cleaning[D]. Xi'an: Shaanxi Normal University, 2013:22-26.
[17] 王承, 段君禄, 刘文, 等. 竹子的超声波处理研究[J]. 化工新型材料, 2018, 46(4):247-250.
WANG Cheng, DUAN Junlu, LIU Wen, et al. Research on ultrasonic processing of bamboo[J]. New Chemical Materials, 2018, 46(4):247-250.
[18] RENOUARD S, HANO C, DOUSSOT J, et al. Characterization of ultrasonic impact on coir, flax and hemp fibers[J]. Materials Letters, 2014(129):137-141.
[19] 李闲闲. 汉麻酶辅助高温高压新型脱胶工艺研究[D]. 太原:太原理工大学, 2015:56-57.
LI Xianxian. Study on high temperature and high pressure degumming process with ligninase of hemp fibers[D]. Taiyuan: Taiyuan University of Technology, 2015:56-57.
[1] GUO Heng, HUANG Hongbo, YAO Jinbo, JIANG Huiyu, XIA Zhigang, WANG Yunli. Effect of household washing on properties of anti-creasing cotton fabrics [J]. Journal of Textile Research, 2021, 42(07): 129-136.
[2] TIE Jiancheng, LIU Jun, JIA Lixia, ZANG Mengmeng, SUN Huiqin, ZHU Peng. Simultaneous determination of plasticizers in waste cotton by ultrasonic assisted solid phase extraction gas chromatography tandem mass spectrometry [J]. Journal of Textile Research, 2021, 42(05): 130-137.
[3] WEI Yanhong, LIU Xinjin, XIE Chunping, SU Xuzhong, JI Yijun. Structure and properties of several differentiated polyester fibers [J]. Journal of Textile Research, 2019, 40(11): 13-19.
[4] XIAO Zhitao, GUO Yongmin, GENG Lei, WU Jun, ZHANG Fang, WANG Wen, LIU Yanbei. Internal defect detection method for thin test pieces of woven laminated composites based on ultrasonic phased array [J]. Journal of Textile Research, 2019, 40(11): 81-87.
[5] HE Junyan, LI Mingfu, ZHANG Jin, ZHUANG Zhikai, LIAN Wenwei. Structure and formaldehyde adsorption properties of modified pineapple leaf fiber [J]. Journal of Textile Research, 2019, 40(05): 1-6.
[6] LI Yang, ZHANG Yuanming, JIANG Wei, ZHANG Jianming, WANG Sishe, SU Jianjun, HAN Guangting. Ultrasonic treatment of Modal fiber dyed with madder [J]. Journal of Textile Research, 2019, 40(04): 83-89.
[7] ZHANG Anying, WANG Zhaoying, WANG Rui, DONG Zhenfeng, WEI Lifei, WANG Deyi. Preparation and structural properties of flame retardant poly(L-lactic acid) and fiber thereof [J]. Journal of Textile Research, 2019, 40(04): 7-14.
[8] WANG Zongqian, WANG Dengfeng, ZHOU Hang, LI Jun. Effect of ultrasonic assistance on morphology of silk fibroin microspheres prepared by emulsion cross-linking process [J]. Journal of Textile Research, 2019, 40(02): 119-124.
[9] . Influence of different drawing methods on appearance and yarn quality of cloud yarn [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(12): 43-48.
[10] . Tensile characteristics of warp knitted spacer fabrics [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(04): 55-60.
[11] . Tensile properties of self-twist yarns [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(03): 44-48.
[12] . Influence of ultrasonic treatment on cellulase hydrolysis of bamboo powder [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(01): 83-87.
[13] . Influence of ultrasound treatment on mechanical property of bamboo fibers modified by nanoparticles [J]. Journal of Textile Research, 2016, 37(3): 16-20.
[14] . Modification process of oxidized bamboo pulp fibers using silk fibroin [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(08): 12-15.
[15] . Ultrasonic assisted cotton/polyester blended fibers quantitative analysis [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(06): 27-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!