Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (12): 49-54.doi: 10.13475/j.fzxb.20201208206

• Fiber Materials • Previous Articles     Next Articles

Analysis on cross-sectional structure of moso bamboo using three-dimensional microscope imaging

CHEN Hainiao, TIAN Wei, JIN Xiaoke, ZHANG Hongxia, LI Yanqing, ZHU Chengyan()   

  1. Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2020-12-31 Revised:2021-08-09 Online:2021-12-15 Published:2021-12-30
  • Contact: ZHU Chengyan E-mail:cyzhu@zstu.edu.cn

Abstract:

In order to study the characteristics and distribution of the cross-sectional structure of moso bamboo, X-ray three-dimensional microscope was used to study the vascular bundle and the parenchyma cell structure of the basic tissue of moso bamboo, and the distribution rules of the long and short axis, area, volume fraction and parenchyma cell area of the vascular bundle were analyzed. The results showed that from the outside to the inside of the cross-section of moso bamboo, the vascular bundle long axis gradually decreased, the short axis gradually increased, and finally the long and short axis tended to be the same. After that, the vascular bundle area gradually increased, and the volume fraction gradually decreased. The adjacent center wheelbase increased, and the area of a single parenchyma cell gradually decreased. On the whole, the cross-section of moso bamboo demonstrated a gradient change. Inspired by the gradient change of bamboo cross-section, the gradient change could be applied to the engineering of bionic composites for specific properties. The gradient change of the overall structure of biomimetic composites can be realized by changing the distribution of fiber and resin. When it is applied to the design of biomimetic composites, the research of biomimetic fiber composites can be carried out.

Key words: X-ray three-dimensional microscope, moso bamboo structure, vascular bundle, moso bamboo-like composite material

CLC Number: 

  • TS101.4

Fig.1

Optical magnification principle of X-ray three-dimensional microscope"

Fig.2

Three-dimensionsal reconstruction of moso bamboo"

Fig.3

Cross-section of bamboo and its definition. (a) Bamboo cross-section image;(b) Definition of components of moso bamboo"

Fig.4

Vascular bundle distribution diagram"

Fig.5

Vascular bundle of moso bamboo changes from outside to inside"

Tab.1

Mean area of vascular bundle and vesselmm2"

结构名称 单个维管束面积 单个导管面积
竹璧外侧(半开放型) 0.109 2 0.004 2
竹璧内侧(开放型) 0.122 5 0.007 2

Fig.6

Vascular bundle area and variation. (a) Sectional area distribution; (b) Variation of vascular bundle volume fraction and wheelbase"

Fig.7

Moso bamboo cross-section image. (a) Local enlarged cross-section diagram; (b) Local magnification of cross-section image"

Tab.2

Changes of single parenchyma cell area"

A所在切线距离/mm 单个薄壁细胞面积/mm2
0.19 0.000 6
0.38 0.001 5
0.57 0.002 1
0.76 0.002 7
[1] DIXON P G, GIBSON L J. The structure and mechanics of moso bamboo material[J]. Journal of The Royal Society Interface, 2014, 11:1-5.
[2] CHEN M, FEI B. In-situ observation on the morphological behavior of bamboo under flexural stress with respect to its fiber-foam composite structure[J]. BioResources, 2018, 13(3):5472-5478.
[3] FEI B, GAO Z, WANG J. Biological, natomical, and chemical characteristics of bamboo[M]. New York: Academic Press Inc, 2016:283-306.
[4] GHAVAMI K. Bamboo as reinforcement in structural concrete elements[J]. Cement and Concrete Composites, 2005, 27(6):637-649.
doi: 10.1016/j.cemconcomp.2004.06.002
[5] 冼杏娟, 冼定国. 竹材的微观结构及其与力学性能的关系[J]. 竹子研究汇刊, 1990, 9(3):10-23.
XIAN Xingjuan, XIAN Dingguo. The microstructure of bamboo and its relationship with mechanical properties[J]. Journal of Bamboo Research, 1990, 9(3):10-23.
[6] AMADA S, UNTAO S. Fracture properties of bamboo[J]. Composites Part B: Engineering, 2001, 32(5):451-459.
doi: 10.1016/S1359-8368(01)00022-1
[7] MA S, TAN H, WANG J, et al. Bamboo-imitated pipes for continuous fiber reinforced polyethylene[J]. Journal of Reinforced Plastics and Composites, 2018, 37(6):359-365.
doi: 10.1177/0731684417750285
[8] TANG M T, WANG Q, HE G Y, et al. Based on bionic optimization design and strength analysis of the tie rod of aircraft landing gear[J]. IOP Conference Series Materials Science and Engineering, 2020, 816(1):012007.
doi: 10.1088/1757-899X/816/1/012007
[9] 许述财, 邹猛, 魏灿刚, 等. 仿竹结构薄壁管的轴向耐撞性分析及优化[J]. 清华大学学报(自然科学版), 2014, 54(3):299-304.
XU Shucai, ZOU Meng, WEI Cangang, et al. Analysis and optimization of axial crash-resistance of bamboo structure thin-walled tube[J]. Journal of Tsinghua University (Natural Science Edition), 2014, 54(3):299-304.
[10] 许培俊, 王临江, 张毅, 等. 仿竹结构单丝玻璃纤维增强多孔聚醚砜基复合材料[J]. 复合材料学报, 2021, 38(4):1302-1312.
XU Peijun, WANG Linjiang, ZHANG Yi, et al. Bamboo like monofilament glass fiber reinforced porous polyethersulfone matrix composites[J]. Acta Materiae Compositae Sinica, 2021, 38(4):1302-1312.
[11] 冯龙, 孙存举, 毕文思, 等. 毛竹薄壁细胞组分分布及取向显微成像研究[J]. 光谱学与光谱分析, 2020, 40(9):2957-2961.
FENG Long, SUN Cunju, BI Wensi, et al. Microscopic imaging of distribution and orientation of parenchymal cell components in moso bambo edulis[J]. Spectroscopy and Spectral Analysis, 2020, 40(9):2957-2961.
[12] WANG Yu, LI Xiao, ZHANG Bo, et al. Meso-damage cracking characteristics analysis for rock and soil aggregate with CT test[J]. Science China(Technological Sciences), 2014, 57(7):1361-1371.
[13] ZHAO Hong, ZHAO Yixin. An automatic loading system forrock core testing with an industrial CT scanner[J]. Petroleum Science, 2011, 8(4):490-493.
doi: 10.1007/s12182-011-0166-5
[14] ABRAHAM E, BESSOU M, ZIEGLE A, et al. Terahertz, X-ray and neutron computed tomography of an eighteenth dynasty egyptian sealed pottery[J]. Applied Physics A: Materials Science & Processing, 2014, 117(3):963-972.
[15] LUO L F, LIN H, LI S. Quantification of 3-D soil macropore networks in different soil macropore networks in different soil types and land uses using computed tomography[J]. Journal of Hydrology, 2010, 393(1/2):53-64.
doi: 10.1016/j.jhydrol.2010.03.031
[16] LIONETTO F, MONTAGNA F, NATALI D, et al. Correlation between elastic properties and morphology in short fiber composites by X-ray computed micro-tomography[J]. Composites Part A: Applied Science and Manufacturing, 2020, 140:106169.
doi: 10.1016/j.compositesa.2020.106169
[17] 向娥琳. 毛竹生长过程中细胞壁结构与性能的变化研究[D]. 成都:四川农业大学, 2018:14-18.
XIANG Elin. Study on the changes of cell wall structure and properties during the growth of moso bamboo[D]. Chengdu: Sichuan Agricultural University, 2018:14-18.
[18] 陈涵. 仿竹径向结构的刚性管设计及其TIG增材研究[D]. 南京:南京理工大学, 2019:11-14.
CHEN Han. Design of rigid tube with bamboo like radial structure and its TIG additive[D]. Nanjing: Nanjing University of Technology, 2019:11-14.
[19] 尚莉莉, 孙正军, 江泽慧, 等. 毛竹维管束的截面形态及变异规律[J]. 林业科学, 2012, 48(12):16-21.
SHANG Lili, SUN Zhengjun, JIANG Zehui, et al. Cross section morphology and variation of vascular bundles in phyllostachys edulis[J]. Forestry Science, 2012, 48(12):16-21.
[20] 渠芳, 连承波, 柴震翰, 等. 基于三维X射线显微镜的孔隙性砂岩中变形带微观结构解析[J]. CT理论与应用研究, 2019, 28(2):167-174.
QU Fang, LIAN Chengbo, CHAI Zhenhan, et al. Analysis of microstructure of deformation zone in porous sandstone based on 3D X-ray microscope[J]. Research on CT Theory and Application, 2019, 28(2):167-174.
[21] CHEN M, DAI C, LIU R, et al. Influence of cell wall structure on the fracture behavior of bamboo(phyll-ostachys edulis) fibers[J]. Industrial Crops and Products, 2020, 155:112787.
doi: 10.1016/j.indcrop.2020.112787
[22] 周斌雄. 基于近红外及拉曼光谱技术的毛竹化学成分和细胞结构研究[D]. 杭州:浙江大学, 2015:2-3.
ZHOU Binxiong. Study on chemical composition and cellular structure of phyllostachys edulis based on near infrared spectroscopy and Raman spectroscopy[D]. Hangzhou: Zhejiang University, 2015:2-3.
[1] JIANG Yulin, WANG Hui, ZHANG Keqin. Research progress of silk fibroin-based hydrogel bioinks for 3D bio-printing [J]. Journal of Textile Research, 2021, 42(11): 1-8.
[2] CHEN Ying, FANG Haoxia. Preparation and properties of hydrophobic conductive polypyrrole coating fabrics [J]. Journal of Textile Research, 2021, 42(10): 115-119.
[3] LI Feng, YANG Jiahao, LAI Gengchang, WANG Jiannan, XU Jianmei. Research progress of polymer embolic microspheres [J]. Journal of Textile Research, 2021, 42(10): 180-189.
[4] WANG Chunhong, YANG Lu, HU Min, WANG Xiaoyun, WANG Lijian. Determination of luteolin content in carex meyeriana extract and its antibacterial properties [J]. Journal of Textile Research, 2021, 42(04): 114-120.
[5] YANG Ya, YAN Fengyi, WANG Hui, ZHANG Keqin. Protein adsorption and cell response on bio-interfaces of silk fibroin/octacalcium phosphate composites [J]. Journal of Textile Research, 2021, 42(02): 41-46.
[6] SONG Guangzhou, TU Fangfang, DING Mengyao, DAI Mengnan, YIN Yin, DONG Fenglin, WANG Jiannan. Negatively enhanced modification of silk fibroin and its load ability to calcitonin gene-related peptide [J]. Journal of Textile Research, 2020, 41(12): 7-12.
[7] LIU Mingjie, LIN Jing, GUAN Guoping, BROCHU G, GUIDION R, WANG Lu. Structures and mechanical properties of typical textile-based artificial ligaments and explants [J]. Journal of Textile Research, 2020, 41(11): 66-72.
[8] AN Qi, FU Yijun, ZHANG Yu, ZHANG Wei, WANG Lu, LI Dawei. Research progress of nonwovens for medical protective garment [J]. Journal of Textile Research, 2020, 41(08): 188-196.
[9] DUAN Hongmei, WANG Ximing, HUANG Zixin, GAO Jing, WANG Lu. Construction and drug release properties of fiber-based mesoporous SiO2 drug carrier [J]. Journal of Textile Research, 2020, 41(07): 15-22.
[10] LI Sijie, ZHANG Caidan. Preparation of poly(aspartic acid) based fiber hydrogel and its drug release behavior [J]. Journal of Textile Research, 2020, 41(02): 20-25.
[11] DONG Ke, LI Siming, WU Guanzheng, HUANG Hongrong, LIN Zhongshi, XIAO Xueliang. Preparation and properties of carbon fiber/polyester electrocardiogram monitoring embroidery electrode [J]. Journal of Textile Research, 2020, 41(01): 56-62.
[12] CHEN Ying, ZHOU Shuang, WEI Tianjing, FANG Haoxia, LI Yufei. Preparation and properties of polypyrrole composite fabric by soft template process [J]. Journal of Textile Research, 2019, 40(12): 93-97.
[13] LIN Yongjia, YANG Dongchao, ZHANG Peihua, GU Yan. Preparation and properties of regenerated silk fibroin/acellular dermal matrix blended nanofiber membrane [J]. Journal of Textile Research, 2019, 40(07): 13-18.
[14] QIAN Lumin, ZHANG Bin. Preparation and characterization of soluble hemostatic medical cotton gauze [J]. Journal of Textile Research, 2019, 40(05): 102-106.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 33 -34 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 35 -36 .
[3] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 107 .
[4] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 109 -620 .
[5] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 101 -102 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 103 -104 .
[7] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 105 -107 .
[8] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 108 -110 .
[9] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 111 -113 .
[10] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 114 -115 .