纺织学报 ›› 2025, Vol. 46 ›› Issue (07): 154-159.doi: 10.13475/j.fzxb.20250202201

• 染整工程 • 上一篇    下一篇

接触式预烘对纯棉针织物平幅染色预烘效率及色差的影响

张涣东1, 纪柏林1,2, 钟毅1, 徐红1, 毛志平1,2,3()   

  1. 1 东华大学 化学与化工学院, 上海 201620
    2 东华大学 国家染整工程技术研究中心, 上海 201620
    3 国家先进印染技术创新中心, 山东 泰安 271000
  • 收稿日期:2025-02-14 修回日期:2025-04-02 出版日期:2025-07-15 发布日期:2025-08-14
  • 通讯作者: 毛志平(1969—),男,研究员,博士。研究方向为纺织品生态染整及绿色环保助剂。E-mail: zhpmao@dhu.edu.cn
  • 作者简介:张涣东(2000—),男,硕士生。主要研究方向为纯棉针织物连续式平幅印染加工。
  • 基金资助:
    国家重点研发计划项目(2017YFB0309700)

Influence of contact pre-drying on pre-drying efficiency and color difference in open-width dyeing of cotton knitted fabrics

ZHANG Huandong1, JI Bolin1,2, ZHONG Yi1, XU Hong1, MAO Zhiping1,2,3()   

  1. 1 College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
    2 National Engineering Research Center for Dyeing and Finishing of Textiles, Donghua University, Shanghai 201620, China
    3 National Innovation Center of Advanced Dyeing and Finishing Technology, Tai'an, Shandong 271000, China
  • Received:2025-02-14 Revised:2025-04-02 Published:2025-07-15 Online:2025-08-14

摘要:

针对纯棉针织物在平幅连续染色过程中采用接触式预烘易导致染料泳移产生色差的问题,探究了预烘温度、无机盐质量浓度、染料质量浓度、染料类型对织物接触式预烘效率的影响,确定了最佳预烘条件;进一步探究了织物单面/双面接触热源和热风辅助对织物正反面色差的影响;基于实验室结果在工厂进行了中试验证实验。实验结果表明:最佳预烘温度为70 ℃;硫酸钠在织物预烘过程中具有保水作用,有利于减少染料泳移从而降低织物色差;所用染料质量浓度和染料类型对织物预烘效率无影响;染料质量浓度在10~50 g/L时,织物双面接触热源有利于水分均匀散失从而减小织物色差;染料质量浓度为10、20 g/L时,不论单面还是双面接触热源,采用热风辅助均有利于减小织物色差,但染料质量浓度为30、40、50 g/L时,采用热风辅助会增加织物色差。中试结果表明,染色织物色差小于1,满足实际生产要求。

关键词: 棉针织物, 平幅染色, 接触式预烘, 染料泳移, 织物色差, 中试实验

Abstract:

Objective In open-width continuous dyeing of cotton knitted fabrics, uncontrollable dye migration is a common issue due to the contact pre-drying technique, consequently leading to a significant color difference (ΔE). In order to solve this issue and promote the wide applications of this dyeing method, the pre-drying process parameters were investigated on the determination of the optimal pre-drying conditions with a small ΔE.

Method The influences of pre-drying temperature, inorganic salt concentration, dye concentration and dye type on the pre-drying efficiency of fabrics were investigated, and the optimal pre-drying conditions were determined. Thereafter, the influences of single-side/double-side contact of fabrics with heat source and hot air on the ΔE of the dyed fabrics were further explored. Consequently, pilot experiments were carried out in the factory based on the results of laboratory experiments.

Results The results showed that the optimal pre-drying temperature was 70 ℃, and the concentration of sodium sulfate was 50 g/L. Sodium sulfate demonstrated a water-retenting effect, which is conducive to reducing the dye migration. Among the selected dyes, the dye concentration and dye type showed no effect on the pre-drying efficiency. When the dye concentration was 10-50 g/L, with or without hot air assistance, the process of double-side contact of fabrics with the heat source was conducive to reducing the ΔE of dyed fabrics. When the dye concentration is 10 or 20 g/L, the hot air flow during pre-drying was conducive to decreasing the fabric color difference. However, when the dye concentration was increased to 30-50 g/L, the hot air flow led to increase of the fabric color difference. In the pilot experiment in the factory, three different pre-drying conditions can be employed for the fabric to obtain a liquid carrying rate of 30%, i.e. 70 ℃ and 8 m/min, 80 ℃ and 10 m/min, and 90 ℃ and 15 m/min. Under these conditions, the fabric ΔE was smaller than 1, meeting the requirements of the actual production.

Conclusion It can be concluded that 70 ℃ is the suitable pre-drying temperature at which sodium sulfate demonstrated a water-retaining effect, which reduces the pre-drying efficiency of fabrics; and that dye concentration/dye type has no effect on the pre-drying efficiency. Double-side contact of fabrics with the heat source reduces the ΔE between the front and back sides of the dyed fabrics. When the dye concentration is 10 g/L or 20 g/L, the hot air assistance reduces the ΔE between the front and back sides of the dyed fabrics. However, when the dye concentration is 30-50 g/L, the hot air assistance increases the ΔE between the front and back sides of the dyed fabrics. In the pilot experiments, the ΔE of the dyed fabrics at 70, 80, or 90 ℃ increases when the fabrics meet the requirement of 30% moisture content, but it is still smaller than 1.

Key words: cotton knitted fabric, open-width dyeing, contact pre-drying, dye migration, fabric color difference, pilot experiment

中图分类号: 

  • O647.9

图1

不同温度下织物的预烘效率"

图2

不同硫酸钠质量浓度下织物的预烘效率"

图3

活性黄4RN不同染料质量浓度下织物的预烘效率"

图4

不同染料类型下织物的预烘效率"

表1

不同加热方式对织物K/S值的影响"

染料质量
浓度/(g·L-1)
不同加热方式下的K/S 固色率/
%
A B C D
10 7.61 7.86 7.42 7.65 92.6
20 9.58 9.62 9.48 9.37 93.4
30 10.53 10.62 10.53 10.52 93.8
40 11.12 10.84 10.80 11.02 92.8
50 11.30 11.65 11.33 11.64 93.6

图5

单/双面接触热源对织物正反面色差的影响"

图6

不同温度对应车速下织物的带液率"

表2

不同预烘温度下染色织物的正反面色差"

温度/℃ 织物正反面色差值
70 0.56
80 0.30
90 0.52
[1] 徐顺成. 针织物染整工艺的现状及发展趋势[J]. 纺织导报, 2008 (3): 74-76.
XU Shuncheng. Developing trend of dyeing & finishing process of knitted fabrics[J]. China Textile Leader, 2008 (3): 74-76.
[2] VAN W K. Economy and ecology in continuous dyeing of cotton fabrics using reactive dyes[J]. International Dyer, 1996, 181(1): 28-32.
[3] LEWIS D M, VOLT T. Dyeing cotton with reactive dyes under neutral conditions[J]. Coloration Technology, 2010, 123(5): 306-311.
[4] HASANBEIGI A, PRICE L. A technical review of emerging technologies for energy and water efficiency and pollution reduction in the textile industry[J]. Journal of Cleaner Production, 2015, 95: 30-44.
[5] 孙冰, 王贤瑞, 武生春, 等. 活性染料轧-烘-轧-蒸工艺实践[J]. 印染, 2005, 31(15): 14-16.
SUN Bing, WANG Xianrui, WU Shengchun, et al. Pad-dry-pad-steaming dyeing process with reactive dyes[J]. China Dyeing & Finishing, 2005, 31(15): 14-16.
[6] LI Xue. Process optimization of dryers in the textile industry[D]. Atlanta: Georgia Institute of Technology, 2004.
[7] 薛孟芳, 张京彬, 张子超, 等. 纯棉针织物平幅染色中的烘筒烘干工艺[J]. 上海纺织科技, 2024, 52(4): 15-18,33.
XUE Mengfang, ZHANG Jingbin, ZHANG Zichao, et al. Cylinder drying technology in open-width dyeing of cotton knits[J]. Shanghai Textile Science and Technology, 2024, 52(4): 15-18,33.
[8] HAMDAOUI M, BAFFOUN A, CHAABEN K B, et al. Experimental study and mathematical model to follow the drying phenomenon of knitted textile fabric[J]. Journal of Engineered Fibers and Fabrics, 2013: 8(3): 70-76.
[9] GONG H, OZGEN B. Fabric structures: woven, knitted, or nonwoven[M]. Cambridge: Woodhead Publishing Engineering of High-Performance Textiles, 2018: 107-131.
[10] YU H, WANG Y, ZHONG Y, et al. Foam properties and application in dyeing cotton fabrics with reactive dyes[J]. Coloration Technology, 2014, 130(4): 266-272.
[11] UDDIN M G. Study on the color levelness of silk fabric dyed with vegetable dyes[J]. Sustainable Chemical Processes, 2015, 3(1): 1-4.
[12] YADAV V, MOON C G. Fabric-drying process in domestic dryers[J]. Applied Energy, 2008, 85(2/3): 143-158.
[13] 陈小文, 吴伟, 钟毅, 等. 棉织物的活性染料低含水率焙蒸固色工艺[J]. 纺织学报, 2021, 42(7): 115-122.
CHEN Xiaowen, WU Wei, ZHONG Yi, et al. Low-moisture content baking and steaming color fixation process for cotton fabrics padded with reactive dyes[J]. Journal of Textile Research, 2021, 42(7): 115-122.
[14] 崔浩然. 活性染料轧染实践[J]. 印染, 2005 (4): 14-18.
CUI Haoran. Pad dyeing with reactive dye[J]. China Dyeing & Finishing, 2005 (4): 14-18.
[15] STENZEL M, LIMA O C M, PEREIRA N C, et al. Generalization of drying curves in conductive/convective drying of cellulose[J]. Brazilian Journal of Chemical Engineering, 2003, 20: 81-86.
[16] 吴伟, 陈小文, 钟毅, 等. 硫酸钠在低带液轧-焙-蒸活性染料染色中的作用[J]. 纺织学报, 2020, 41(5): 85-93.
WU Wei, CHEN Xiaowen, ZHONG Yi, et al. Role of sodium sulfate in low add-on pad-cure-steam reactive dyeing process[J]. Journal of Textile Research, 2020, 41(5): 85-93.
[17] MAO Z, YU H, WANG Y, et al. States of water and pore size distribution of cotton fibers with different moisture ratios[J]. Industrial & Engineering Chemistry Research, 2014, 53(21): 8927-8934.
[1] 李一飞, 郑敏, 常朱宁子, 李丽艳, 曹元鸣, 翟旺宜. 二维过渡金属碳化物(Ti3C2Tx)对棉针织物的功能整理及其性能分析[J]. 纺织学报, 2021, 42(06): 120-127.
[2] 张滕家璐, 吴伟, 钟毅, 毛志平, 徐红. 平幅前处理对棉针织物染色性能的影响[J]. 纺织学报, 2021, 42(03): 9-13.
[3] 刘丽宾, 吕汪洋, 陈文兴. 棉针织物漂白中铜配合物催化降解木质素及其模型化合物[J]. 纺织学报, 2021, 42(03): 1-8.
[4] 丁子寒, 邱华. 纳米二氧化硅改性水性聚氨酯防水透湿涂层织物的制备及其性能[J]. 纺织学报, 2021, 42(03): 130-135.
[5] 尉腾祥, 李敏, 彭虹云, 付少海. 纬平针棉针织物平幅丝光条件与其线圈结构的关系[J]. 纺织学报, 2020, 41(04): 98-105.
[6] 尉腾祥, 李敏, 彭虹云, 付少海. 纬平棉针织物双向拉伸线圈形态分析[J]. 纺织学报, 2019, 40(11): 64-68.
[7] 何青青, 徐红, 毛志平, 张琳萍, 钟毅, 吕景春. 高导电性聚吡咯涂层织物的制备[J]. 纺织学报, 2019, 40(10): 113-119.
[8] 张帆, 张儒, 周文常, 周辉, 汪南方. 金属铜配合物催化双氧水用于棉针织物的低温漂白[J]. 纺织学报, 2019, 40(08): 101-108.
[9] 陶开鑫, 俞成丙, 侯颀骜, 吴聪杰, 刘引烽. 基于最小二乘支持向量机的棉针织物活性染料湿蒸染色预测模型[J]. 纺织学报, 2019, 40(07): 169-173.
[10] 马振萍, 毛志平, 钟毅, 徐红. 单面纬平针织物平幅轧蒸染色防卷边控制[J]. 纺织学报, 2019, 40(05): 91-96.
[11] 吴臣仁, 吕汪洋, 陈文兴. 铜配合物在棉针织物低温中性漂白中的应用[J]. 纺织学报, 2019, 40(01): 91-96.
[12] 辛春莉 王子玉 周建 潘如如 高卫东. 数码相机在染色织物色差测量中的应用[J]. 纺织学报, 2018, 39(08): 77-82.
[13] 赵文杰 张晓云 钟毅 徐红 毛志平. 棉针织物的冷轧堆前处理与染色[J]. 纺织学报, 2016, 37(06): 76-82.
[14] 靳贺玲;张玉萍. 碱性果胶酶精练棉针织物表面红外光谱分析[J]. 纺织学报, 2010, 31(1): 81-84.
[15] 吴辉.;钱国坻;华兆哲.;阎贺静.;张朝晖;堵国成.;陈坚.. 新型碱性果胶酶用于棉针织物精练的工艺优化[J]. 纺织学报, 2008, 29(5): 59-63.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!