纺织学报 ›› 2025, Vol. 46 ›› Issue (05): 227-235.doi: 10.13475/j.fzxb.20241005301

• 服装工程 • 上一篇    下一篇

基于功能分区的横编防护外套模块化设计

丛洪莲(), 方蕾妹, 姜菲, 李慧建, 俞旭良   

  1. 江南大学 针织技术教育部工程研究中心, 江苏 无锡 214122
  • 收稿日期:2024-10-29 修回日期:2025-01-16 出版日期:2025-05-15 发布日期:2025-06-18
  • 作者简介:丛洪莲(1976—),女,教授,博士。主要研究方向为针织生产的数字化与智能化、针织产品的创新设计与性能。E-mail: cong-wkrc@163.com
  • 基金资助:
    江苏省自然科学青年基金项目(BK20231056);中央高校基本科研业务费专项资金资助项目(JUSRP123005)

Modular design of knitted protective jackets based on functional partitioning

CONG Honglian(), FANG Leimei, JIANG Fei, LI Huijian, YU Xuliang   

  1. Engineering Research Center for Knitting Technology, Ministry of Education, Jiangnan University,Wuxi, Jiangsu 214122, China
  • Received:2024-10-29 Revised:2025-01-16 Published:2025-05-15 Online:2025-06-18

摘要:

针对现有防护服装存在舒适度欠佳,防护功能单一以及缺乏合理功能分区的问题。基于横编组织的多样性特征,以防护功能为主体,融合人体工学理论,对横编防护服装进行模块化设计研究。首先对功能分区设计方案进行系统性阐述。接着从功能分区原则、功能分区逻辑以及功能分区模板3部分详细阐述构建功能分区模块化设计模型的方法。最后以一款女士横编防护外套为例验证。结果表明:应用功能分区模块化设计方法,得到有8个分区的防护外套功能分区模型,利用横编工艺将人体三维数据转换成二维服装针织工艺,通过衣片热压成形和加/叠针工艺实现不同分区模块的连接,借助数字化展示验证了功能分区模块化设计方法功能性与舒适性的融合,为未来防护服装的开发提供了重要参考。

关键词: 横编针织工艺, 防护服装, 功能分区, 模块化设计, 人体工学

Abstract:

Objective The current demand for cut- and rubbing-resistant flexible protective clothing is becoming increasingly diverse and complex.The majority of protective clothing currently available on the market is designed solely to provide only physical protection, which is single in function and fails to align with the design concept of modular protection for different parts of the human body. This research proposes a modularized design method for flat-bed knitted protective jacket based on functional partitioning, which is derived from the principles of ergonomic theory and the flat-bed knitting process.
Methods The functional partition design scheme was initially delineated in a systematic manner. Subsequently, the method for developing the modularized design model of functional partitioning was elucidated in comprehensive detail, encompassing three fundamental aspects, which are the functional partitioning principle, the functional partitioning logic, and the functional zoning template. Finally, the design was validated through the analysis of a knitted female protective jacket, which was knitted on a STOLL CMS ADF computerized flat knitting machine.
Results The modularization design process is shown, which started with the demand analysis of the garment. The functional partitioning logic was formulated according to the functional partitioning principle; the functional partitioning template was generated, and the modularization design verification and application were carried out. It shows the combination of anthropometric datum and datum line to determine the module division size and location. It demonstrates that the outer layer of protection was zoned into the following levels: chest, abdomen, waist, back, head, and upper limbs. The functional partitioning levels of the inner layer of protection, from highest to lowest, are abdomen, back, head, shoulder, upper arm, forearm, and chest. The logic for addressing conflicts in merging functional zones is as follows: pariritization rules are established to ensure that the outer layer of protection takes precedence over the inner layer, while accommodating the pariritization of different body parts based on their specific requirements. The functional partitioning template must be dynamically adjusted, encompassing adjustments to the number of zones (with consideration given to merging when fewer than 13 zones are present) and the inclusion of special functions such as high mobility and high permeathability, tailored to meet specific needs. Applying this principle, a protective jacket functional partitioning model was constructed.
Conclusion This study proposes modular design of knitted protective apparel, with a focus on the integration of ergonomic theory and the consideration of the diversity characteristics inherent to cross knitting organizations. The modular design comprises three components: functional partitioning principle, logic, and template, achieving synergy and balance of body functions through the division and integration of functional modules. The objective is to develop a comprehensive understanding of the protective function, which serves as the primary foundation for the design process. A horizontal knit protective jacket for women serves as an exemplar for verification. The results demonstrate that the application of the modular design method of functional partitioning has yielded a functional partitioning model of a protective jacket comprising eight zones. Based on this model, three-dimensional body data is combined with a two-dimensional flat paper pattern, which is then converted into stitch and row counts for machine knitting, ultimately being shaped through knitting technology. The connection of different zoned modules is achieved through the application of high-efficiency fiber product thermo-compression molding technology (utilizing an ultrasonic device for heating during the molding process, followed by the use of a hobbing knife to cut the fabric interface) or the needle augmentation/stacking process (necessitating additional stitches when the lower module has fewer stitches than the upper module, and stacking stitches when the lower module has more stitches). Finally, digital display technology is employed, which verified the integration of the modular design concept of functional partitioning in terms of functionality and comfort. This study presents a realization scheme for the development of protective clothing with functional partitioning, with the objective of creating an advanced protective clothing system that can effectively respond to a range of protection needs while also ensuring the comfort and adaptability of the wearer.

Key words: flat-bed knitting technique, protective clothing, functional partitioning, modular design, ergonomics

中图分类号: 

  • TS186.3

图1

基于功能分区的模块化设计结构框架"

图2

人体上半身基准点及相关测量部位"

图3

外层防护功能分区"

图4

内层防护功能分区"

图5

特殊功能分区"

图6

功能分区模型"

图7

防护外套功能分区模型"

表1

面料基本参数"

编号 分区编号 横密/
(纵行·(5 cm)-1)
纵密/
(横列·(5 cm)-1)
耐切割
载荷/N
切割
等级
保温率/
%
透气率/
(mm·s-1)
排汗性
等级/级
S1 E5I5 36 56 19.0 A4 38.7 130.5 3
S2 E4I5 36 66 18.4 A4 42.3 137.2 4
S3 I3E3 36 76 25.3 A5 41.4 133.6 4
S4 E1I6 36 72 27.7 A5 40.6 140.2 3
S5 E2I1 42 68 22.7 A5 53.6 146.3 3
S6 I1E3 44 80 19.1 A4 51.1 125.8 4
S7 T1 44 74 22.0 A5 36.4 324.3 4
S8 T2 42 68 21.0 A4 43.6 165.7 3

图8

防护外套款式图"

图9

防护外套纸样图"

图10

防护外套编织工艺图"

图11

模块连接处加/叠针工艺示意"

图12

防护外套实物效果图"

[1] LIU Q, CHEN F, DONG T, et al. Large-scale fabrication of snake-skin-inspired protective composite textiles[J]. Advanced Fiber Materials, 2024, 6: 978-992.
[2] MIKUCIONIENE D, HALAVSKA L, BOBROVA S, et al. Ultra-strong knits for personal protective equip-ment[J]. Applied Sciences, 2020, 10(18): 6197.
[3] 张冰洁, 王莉, 傅维杰, 等. 滑雪内衣差异化需求多维度分析[J]. 纺织学报, 2021, 42(8): 161-166.
ZHANG Bingjie, WANG Li, FU Weijie, et al. Multi-dimensional analysis of differentiation demands for ski underwear[J]. Journal of Textile Research, 2021, 42(8): 161-166.
[4] 张冰洁, 沈津竹, 王建萍, 等. 无缝男式滑雪内衣躯干部位的分区设计[J]. 针织工业, 2023,(11):59-62.
ZHANG Bingjie, SHEN Jinzhu, WANG Jianping, et al. Men's seamless ski underwear torso zoning design[J]. Knitting Industries, 2023, (11): 59-62.
[5] 何咏诗, 张初阳, 宋武. 基于人因工学的户外登山服研究[J]. 设计, 2023, 36(15): 124-127.
HE Yongshi, ZHANG Chuyang, SONG Wu. Research on intelligent wearable outdoor mountaineering wear based onergonomics[J]. Design, 2023, 36(15): 124-127.
[6] 闫亦农. 基于"互联网+"的蒙古族服装个性化定制模块化设计[J]. 毛纺科技, 2023, 51(3): 66-73.
YAN Yinong. Mongolian personalized custom clothing modular design by "Internet +"[J]. Wool Textile Journal, 2023, 51(3): 66-73.
[7] 王淏鋆, 王传春. 轻户外服装的模块化设计研究[J]. 西部皮革, 2023, 45(3): 106-110.
WANG Haoyun, WANG Chuanchun. Research on modular design of light outdoor clothing[J]. Westleather, 2023, 45(3): 106-110.
[8] 周海媚, 徐燕妮, 张旭靖, 等. 服装款式模块化设计方法[J]. 纺织学报, 2015, 36(8): 104-109.
ZHOU Haimei, XU Yanni, ZHANG Xujing, et al. Modularized design method of garment style[J]. Journal of Textile Research, 2015, 36(8): 104-109.
[9] SU T, YU X, CONG H. Design and development of ultra-high molecular weight polyethylene seamless sportswear[J]. The Journal of The Textile Institute, 2023, 41:1-12.
[10] 徐佩, 阎玉秀. 基于热湿舒适性的女子贴身内衣分区设计[J]. 浙江理工大学学报, 2012, 29(3): 352-356.
XU Pei, YAN Yuxiu. Sectional design of female underwear based on heat-moisture comfort[J]. Journal of Zhejiang Sci-Tech University, 2012, 29(3): 352-356.
[11] 刘博, 丛洪莲. 四针床全成形休闲西服的工艺设计与成形原理[J]. 纺织学报, 2020, 41(4): 129-134.
LIU Bo, CONG Honglian. Process design and knitting principle of one-piece casual suits based on four-needle-bed flat knitting machine[J]. Journal of Textile Research, 22020, 41(4): 129-134.
[12] 巫晓雯, 詹必钦, 丛洪莲, 等. 针织全成形服装工艺转换模型构建与应用[J]. 丝绸, 2022, 59(11): 82-88.
WU Xiaowen, ZHAN Biqin, CONG Honglian, et al. Construction and application of a process conversion model for fully-formed knitted garments[J]. Journal of Silk, 2022, 59(11): 82-88.
[1] 王军, 殷晓玉, 周晓琪, 王思远. 智能矫姿服装设计[J]. 纺织学报, 2025, 46(04): 179-186.
[2] 沙莎, 戴佳丽, 褚国伟, 付康怡, 刘雅婷, 邓中民. 全成形康复训练裤的结构设计与实现[J]. 纺织学报, 2025, 46(04): 171-178.
[3] 马帅, 张西临, 黄宽, 王崴, 瞿珏. 中国男性飞行员体型特征分类[J]. 纺织学报, 2025, 46(01): 163-169.
[4] 杨光, 杨小兵, 栗丽, 姚之凤, 周川, 张明明. 新修定的化学防护服国家标准解析[J]. 纺织学报, 2024, 45(03): 163-168.
[5] 王予涛, 丛洪莲, 顾洪阳. 纬编成形护膝结构设计及其热湿舒适性[J]. 纺织学报, 2023, 44(10): 68-74.
[6] 戴艳阳, 王诗潭, 王云仪, 李俊. 基于运动生物力学的防护服装活动性能研究进展[J]. 纺织学报, 2022, 43(11): 212-218.
[7] 董智佳, 孙菲, 丛洪莲, 俞旭良. 低损耗纬编成形女士背心的结构设计与建模[J]. 纺织学报, 2022, 43(07): 129-134.
[8] 翟丽娜, 李俊, 杨允出. 热防护服装测评用传感器的发展及其研究现状[J]. 纺织学报, 2020, 41(10): 188-196.
[9] 何佳臻, 薛萧昱, 王敏, 李俊. 基于最大衰减因子模型的服装热防护性能预测[J]. 纺织学报, 2020, 41(06): 112-117.
[10] 陈 思 卢业虎 戴晓群 王敏. 高温液体及蒸汽防护服装防护性能研究进展[J]. 纺织学报, 2018, 39(05): 144-149.
[11] 周海媚 徐燕妮 张旭靖 陈雁. 服装款式模块化设计方法[J]. 纺织学报, 2015, 36(08): 104-109.
[12] 王敏 李俊 李小辉. 燃烧假人在火场热防护服装研究中的应用[J]. 纺织学报, 2013, 34(3): 154-160.
[13] 张向辉;王云仪;李俊;张文斌. 防护服装结构设计对着装舒适性的影响[J]. 纺织学报, 2009, 30(06): 138-144.
[14] 李克兢;崔世忠. 模块化服装快速生产设计系统的开发[J]. 纺织学报, 2006, 27(1): 50-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!