纺织学报 ›› 2025, Vol. 46 ›› Issue (10): 11-18.doi: 10.13475/j.fzxb.20250104601

• 纤维材料 • 上一篇    下一篇

聚丙烯/聚对苯二甲酸丁二醇酯共混纤维的制备及其流变与热性能

孙燕燕1,2, 张世韬3, 刘衡3, 李明远1,2, 蔡正国1,2, 孙俊芬1,2, 陈龙1,2()   

  1. 1.东华大学 材料科学与工程学院, 上海 201620
    2.东华大学 先进纤维材料全国重点实验室, 上海 201620
    3.湖北博韬合纤股份有限公司, 湖北 荆门 448002
  • 收稿日期:2025-01-16 修回日期:2025-04-29 出版日期:2025-10-15 发布日期:2025-10-15
  • 通讯作者: 陈龙(1975—),男,研究员,博士。主要研究方向为高聚物改性、纤维成形加工新技术、聚酯降解回收工作等。E-mail:happyjack@dhu.edu.cn
  • 作者简介:孙燕燕(1999—),女,硕士生。主要研究方向为聚丙烯改性、熔融纺丝。

Preparation of polypropylene/polybutylene terephthalate blend fibers and their rheological and thermal properties

SUN Yanyan1,2, ZHANG Shitao3, LIU Heng3, LI Mingyuan1,2, CAI Zhengguo1,2, SUN Junfen1,2, CHEN Long1,2()   

  1. 1. College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
    2. State Key Laboratory of Advanced Fiber Materials, Donghua University, Shanghai 201620, China
    3. Hubei Botao Synthetic Fiber Co., Ltd., Jingmen, Hubei 448002, China
  • Received:2025-01-16 Revised:2025-04-29 Published:2025-10-15 Online:2025-10-15

摘要:

为研发不同结构特征的聚丙烯/聚对苯二甲酸丁二醇酯(PP/PBT)共混纤维,选择质量分数分别为5%、10%、15%、20%、25%和30%的PBT与PP共混切片熔融纺丝。借助流变仪研究了PP/PBT共混熔体的流变特性,借助差示扫描量热仪分析了共混物的热性能,结果表明共混体系为不相容体系。在此基础上,通过改变组分比例,调控PP/PBT共混纤维的制备工艺参数,成功制备出具有沟槽状及微纤结构的PP/PBT共混纤维;并且在250 ℃下进行纺丝所制备的纤维具有最佳性能。随着分散相组分比的增加,共混纤维的表面沟槽状结构愈发明显。当PBT的质量分数达到30%时,共混纤维表面出现了最为明显的沟槽状结构及大量微纤。进一步对PP/PBT共混纤维进行超声波处理发现,纤维表面出现了大量PBT微纤,形成鹅绒状纤维形态。

关键词: 聚丙烯, 聚对苯二甲酸丁二酯, 共混纤维, 组分比, 微纤结构, 熔融纺丝, 流变特性

Abstract:

Objective Polypropylene (PP) fibers are characterized by their low density (0.91 g/cm3) and superior thermal insulation properties, with a thermal insulation efficiency of up to 36.49%. Polybutylene terephthalate(PBT) fibers exhibit excellent elasticity, bending recovery, and a higher elastic recovery rate compared to polyester fibers. Moreover, PBT fibers possess a soft, fluffy texture and demonstrate good moisture absorption capabilities. To investigate the morphological structure of PP/PBT blend fibers produced via melt spinning using polypropylene and polybutylene terephthalate blend chips with varying blending ratios, the mass fractions of PBT added were set at 5%, 10%, 15%, 20%, 25%, and 30%, respectively.

Method After uniformly mixing the PP and PBT slices, a twin-screw extruder is utilized for blending and granulation. Subsequently, a capillary rheometer is employed to prepare the blended fibers with varying component ratios. The fibers are then subjected to ultrasonic vibration and drying using an ultrasonic instrument, resulting in fibrillated blended fibers. By exploiting the incompatibility and viscosity differences between the two components, the dispersed phase forms a network of microfibers within the continuous phase.

Results In this study, a rotational rheometer is employed to investigate the steady-state rheological properties of polymer melts under varying temperature conditions. Both materials exhibit typical shear-thinning characteristics, with the shear viscosity of the melt decreasing as temperature increases. Fitting analysis based on the Carreau model is conducted to determine the zero shear viscosity values of these two raw materials. The zero shear viscosity ratios of PP and PBT melts at different temperatures are presented. The n values for the PP melt are all less than 1, indicating significant non-Newtonian characteristics. Under varying shear rates, the apparent viscosity of the PP melt undergoes considerable changes. However, the n value does not vary significantly with temperature, suggesting that temperature has a relatively minor effect on the apparent viscosity of PP. It can be concluded that the viscosity of PBT is lower than that of PP under the same testing conditions, with all zero shear viscosity ratios for the system being less than 1. PP displays a distinct endothermic peak at 156 ℃, corresponding to its melting temperature, while the endothermic peak of PBT occurs at 220 ℃, indicating its melting temperature. Additionally, it is found that the blend system is incompatible. The initial decomposition temperature of PP is 350 ℃, reaching the decomposition endpoint at 420 ℃, whereas PBT has an initial decomposition temperature of 390 ℃ and a termination decomposition temperature of 430 ℃. As the proportion of system components increases, the groove structure on the fiber surface becomes increasingly pronounced. When the PBT mass fraction reaches 30%, microfiber delamination occurs on the fiber surface, forming a unique structure resembling goose down. Through ultrasonic vibration treatment of fibers, it is observed that the surface of blended fibers with a PBT mass fraction below 30% did not undergo significant changes. However, a substantial number of microfibers adhered to the surface of PP/PBT fibers with a 30% PBT content, resulting in a fiber morphology resembling that of goose down.

Conclusion In this research, the PP/PBT blend fibers were prepared using the melt spinning method. The preparation process parameters for the PP/PBT blend fibers were optimized by varying the component ratio, leading to a fiber surface characterized by a groove-like and microfiber structure. The PP/PBT blend fibers spun at a temperature of 250 ℃ demonstrated the best performance. As the dispersed phase component ratio increased, the groove-like structure became more pronounced. The most distinct groove-like structure and a considerable quantity of microfibers were observed with a PBT content of 30%. Following further processing of the PP/PBT blend fibers with ultrasound, a significant amount of PBT microfibers emerged, resulting in a goose-down-like fiber morphology.

Key words: polypropylene, polybutylene terephthalate, blend fiber, component ratio, microfiber structure, melt spinning, rheological hehavior

中图分类号: 

  • TQ342.95

图1

不同温度下PP和PBT熔体剪切黏度随剪切速率的变化曲线"

图2

不同温度下PP和PBT熔体的零切黏度比"

图3

不同温度下PP熔体剪切黏度随剪切速率的变化曲线"

图4

PP熔体的lgηa-lg γ · 关系"

图5

PP熔体的lgηa- γ · 1 / 2关系"

图6

PP熔体的lnηa-1/RT的关系"

表1

PP与PBT熔体的黏流活化能"

剪切速率/s-1 黏流活化能/(kJ·mol-1)
PP PBT
2 000 7.256 3.099
2 834 7.087 2.424
4 008 6.310 2.147
5 676 6.208 2.097
8 024 5.924 1.862

图7

PP/PBT共混切片的DSC曲线"

图8

PP/PBT切片的TG和DTG曲线"

图9

PP/PBT共混纤维DSC一次升温曲线"

图10

超声前后共混纤维表面形貌照片"

[1] 花泓静. 可染改性聚丙烯复合纤维的制备及性能研究[D]. 杭州: 浙江理工大学, 2021: 11-12.
HUA Hongjing. Preparation and performance study of modified polypropylene composite fibers[D]. Hangzhou: Zhejiang Sci-Tech University, 2021: 11-12.
[2] 王锐, 朱志国, 张大省, 等. 相容剂对PA6/PE基体-微纤型共混纤维形态结构的调控[J]. 高分子材料科学与工程, 2002, 18(5): 96-99.
WANG Rui, ZHU Zhiguo, ZHANG Daxing, et al. The regulation of microfiber-type blended fiber morphology structure by compatibilizer on PA6/PE matrix[J]. Polymer Materials Science & Engineering, 2002, 18(5): 96-99.
[3] LI H, HU G H. The early stage of the morphology development of immiscible polymer blends during melt blending: compatibilized vs. uncompatibilized blends[J]. Journal of Polymer Science Part B Polymer Physics, 2015, 39(5): 601-610.
doi: 10.1002/(ISSN)1099-0488
[4] COX R G. The deformation of a drop in a general time-dependent fluid flow[J]. Journal of Fluid Mechanics, 2006, 37(3): 601-623.
doi: 10.1017/S0022112069000759
[5] CHEN X, XU J, GUO B H. Development of dispersed phase size and its dependence on processing parame-ters[J]. Journal of Applied Polymer Science, 2006, 102(4): 3201-3211.
doi: 10.1002/app.v102:4
[6] 杨汪洋, 王立诚, 孙燕燕, 等. 温度对聚甲醛/聚丙烯共混物流变性能及界面张力的影响[J]. 合成纤维工业, 2024, 47 (4): 28-34.
YANG Wangyang, WANG Licheng, SUN Yanyan, et al. The influence of temperature on the rheological properties and interfacial tension of POM/PP blend[J]. Synthetic Fiber Industry, 2024, 47 (4): 28-34.
[7] PAN D, HUFENUS R, QIN Z Y, et al. Tuning gradient microstructures in immiscible polymer blends by viscosity ratio[J]. Journal of Applied Polymer Science, 2019, 136(44): 48165.
doi: 10.1002/app.v136.44
[8] PAN D, HUFENUS R, QIN Z Y, et al. Tailored gradient morphologies and anisotropic surface patterns in polymer blends[J]. Macromolecular Materials and Engineering, 2018, 304(3): 1800601.
doi: 10.1002/mame.v304.3
[9] SILVA E R, COELHO J F J, BORDADO J C. Hybrid polyethylene/polypropylene blended fiber-reinforced cement composite[J]. Journal of Composite Materials, 2012, 47(25): 3131-3141.
doi: 10.1177/0021998312462619
[10] 张景春. 基于母粒共混改性制备超柔PBT纤维及其性能研究[D]. 上海: 东华大学, 2019: 18-20.
ZHANG Jingchun. Preparation of ultra-soft PBT fibers by masterbatch blending modification and study of their properties[D]. Shanghai: Donghua University, 2019: 18-20.
[11] 闻秀银, 陈海燕, 路广, 等. PBT弹性短纤维纺纱工艺研究[J]. 合成纤维工业, 2021, 44(3): 42-47.
WEN Xiuyin, CHEN Haiyan, LU Guang, et al. Research on spinning process of PBT elastic short fibers[J]. Synthetic Fiber Industry, 2021, 44(3): 42-47.
[12] 陈向玲, 张景春, 吉鹏, 等. PDMS共混改性超柔PBT纤维的制备及其性能[J]. 纺织导报, 2020(5): 36-42.
CHEN Xiangling, ZHANG Jingchun, JI Peng, et al. Preparation of PDMS blended modified ultra-soft PBT fibers and their properties[J]. China Textile Leader, 2020(5): 36-42.
[13] TAVANAIE M A, SHOUSHTARI A M, GOHARPEY F. Polypropylene/poly(butylene terephthalate) melt spun alloy fibers dyeable with carrier-free exhaust dyeing as an environmentally friendlier process[J]. Journal of Cleaner Production, 2010, 18(18): 1866-1871.
doi: 10.1016/j.jclepro.2010.08.003
[14] IGNACZAK W, WOJCIECH K, JANIK J, et al. Mechanical and thermal properties of PP/PBT blends compatibilized with triblock thermoplastic elastomer[J]. Polish Journal of Chemical Technology, 2015, 17(3): 78-83.
doi: 10.1515/pjct-2015-0053
[15] MEHRABIAN S, ACOSTA E, BUSSMANN M. Oil-particle separation in a falling sphere configuration: effect of viscosity ratio & interfacial tension[J]. Interational Journal of Multiphase Flow, 2018, 98: 120-127.
[16] 方丽华, 李非凡, 董茹欣, 等. 聚对苯二甲酸丁二醇酯共混改性聚丙烯的耐热性能研究[J]. 塑料科技, 2024, 52(11): 13-18.
FANG Lihua, LI Feifan, DONG Ruxin, et al. Study on the heat resistance of polybutylene terephthalate blend modified polypropylene[J]. Plastic Science and Technology, 2024, 52(11): 13-18.
[17] 田银彩, 李世瑞, 胡少辉. 离子液体增容PP/PBT共混物[J]. 工程塑料应用, 2020, 48(12): 128-132.
TIAN Yincai, LI Shirui, HU Shaohui. Ion liquid compatibilization of PP/PBT blends[J]. Engineering Plastics Application, 2020, 48(12): 128-132.
[18] 梁晓. 聚丙烯纤维表面结构调控及其增强复合材料的性能研究[D]. 上海: 东华大学, 2022: 38-39.
LIANG Xiao. Research on the surface structure regulation of polypropylene fibers and the performance improvement of composite materials[D]. Shanghai: Donghua University, 2022: 38-39.
[1] 吴晋瑶, 钟毅, 张琳萍, 徐红, 毛志平. 基于聚苯胺的柔性红外隐身薄膜的制备与性能[J]. 纺织学报, 2025, 46(09): 1-8.
[2] 毛泽, 高俊, 凌磊, 武丁胜, 陶云, 张春, 李申, 凤权. 聚丙烯腈/聚吡咯纳米纤维膜的制备及其对铬离子的吸附性能[J]. 纺织学报, 2025, 46(09): 57-65.
[3] 王泓力, 张辉, 刘建宇, 尉海泽, 张雅宁, 王丽丽, 许学潮. 棉基生物炭-ZIF-L(Zn)-壳聚糖/聚丙烯复合膜的制备及其吸附-光催化性能[J]. 纺织学报, 2025, 46(09): 84-93.
[4] 陈晴宇, 陆春红, 张斌, 晋义凯, 黄琪帏, 王超, 丁彬, 俞建勇, 王先锋. 碳纤维增强水泥基灌浆料的制备及其性能[J]. 纺织学报, 2025, 46(08): 120-126.
[5] 时虎, 王赫, 王洪杰, 潘显苗. 多孔交联纳米纤维基超级电容器隔膜的设计[J]. 纺织学报, 2025, 46(08): 45-52.
[6] 林玉婷, 许仕林, 胡毅. 多色彩热塑性聚氨酯/聚丙烯腈纳米纤维纱线的制备及其性能[J]. 纺织学报, 2025, 46(07): 78-86.
[7] 贾陈诺瓦, 张勇, 朱威岩, 刘赛, 唐宁. 芯纱种类对聚丙烯腈纳米纤维导电包芯纱性能的影响[J]. 纺织学报, 2025, 46(07): 87-95.
[8] 丁圆, 赵云霞, 靳高岭, 杨涛, 徐静, 柯福佑, 陈烨. 阻燃聚丙烯腈长丝织物的层层自组装法制备及其性能[J]. 纺织学报, 2025, 46(06): 168-177.
[9] 张嘉诚, 于影, 左雨欣, 顾志清, 汤腾飞, 陈洪立, 吕勇. 聚丙烯腈/二硫化钼纤维薄膜的挠曲电效应与扭转传感特性[J]. 纺织学报, 2025, 46(06): 80-87.
[10] 闫静, 王亚倩, 刘晶晶, 李好义, 杨卫民, 康卫民, 庄旭品, 程博闻. 熔融静电纺长丝纱的制备及其在摩擦纳米发电机中的应用[J]. 纺织学报, 2025, 46(05): 23-29.
[11] 林伟嘉, 冀大伟, 田徐泳, 王春蕾, 薛昊龙, 肖长发. 增强型聚丙烯中空纤维膜制备及其油水分离性能[J]. 纺织学报, 2025, 46(04): 38-46.
[12] 赵超, 金欣, 王闻宇, 朱正涛. 自充电超级电容器用聚丙烯腈纳米纤维隔膜的制备及其性能[J]. 纺织学报, 2025, 46(02): 20-25.
[13] 王容容, 周洲, 冯祥, 申莹, 刘峰, 邢剑. 聚酯纤维与聚乙烯/聚丙烯双组分纤维多孔吸声材料的制备及其性能[J]. 纺织学报, 2025, 46(02): 61-68.
[14] 欧宗权, 于金超, 潘志娟. 光致变色聚乳酸/聚3-羟基丁酸酯共混纤维的纺制及其结构与性能[J]. 纺织学报, 2024, 45(12): 9-17.
[15] 张蕊, 应迪, 陈冰冰, 田欣, 郑莹莹, 王建, 邹专勇. 碳纳米管修饰三维纤维网非织造布传感器的制备及其性能[J]. 纺织学报, 2024, 45(11): 46-54.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!