纺织学报 ›› 2025, Vol. 46 ›› Issue (11): 118-125.doi: 10.13475/j.fzxb.20240907101

• 纺织工程 • 上一篇    下一篇

三维深角联芳纶织物/环氧树脂复合材料的弯曲性能

谢宜轩, 钟林, 徐柠浩, 黄晓梅, 曹海建()   

  1. 南通大学 纺织服装学院, 江苏 南通 226019
  • 收稿日期:2024-09-27 修回日期:2025-08-01 出版日期:2025-11-15 发布日期:2025-11-15
  • 通讯作者: 曹海建(1979—),男,教授,博士。主要研究方向为防弹防机械伤害、结构增强和功能纺织复合材料及装备研发。E-mail: caohaijian@ntu.edu.cn
  • 作者简介:谢宜轩(2000—),女,硕士生。主要研究方向为防弹车用复合材料。
  • 基金资助:
    国家重点研发计划项目(2018YFC0810300);国家级大学生创新训练项目(202210304037Z);江苏省研究生科研与实践创新计划项目(KYCX24_3523);江苏省研究生科研与实践创新计划项目(KYCX24_3526);江苏省研究生科研与实践创新计划项目(KYCX24_3530)

Bending properties of three-dimensional deep-angle interlock aramid fabric/epoxy resin composites

XIE Yixuan, ZHONG Lin, XU Ninghao, HUANG Xiaomei, CAO Haijian()   

  1. School of Textile and Clothing, Nantong University, Nantong, Jiangsu 226019, China
  • Received:2024-09-27 Revised:2025-08-01 Published:2025-11-15 Online:2025-11-15

摘要:

为探究三维机织复合材料的弯曲作用机制,以芳纶织物为增强体,环氧树脂和聚醚胺为基体制备了三维深角联芳纶/环氧树脂复合材料。研究了织物纬密、组织结构以及铺层方式对三维深角联芳纶织物/环氧树脂复合材料弯曲性能的影响。结果表明:当三维深角联芳纶/环氧树脂复合材料承受弯曲载荷时,纬向弯曲性能优于经向;随着纬密增大,材料的纬向弯曲强度、弯曲模量以及经向弯曲模量均呈先升后降的趋势,而经向弯曲强度则呈下降趋势;材料的纬向弯曲性能优于平纹结构,并具有更好的抗分层性。采用正交铺层方式制备的复合材料有利于最大限度地发挥材料弯曲性能的提高潜力,同时减小弯曲性能各向差异。

关键词: 复合材料, 三维深角联, 织物纬密, 组织结构, 铺层方式, 弯曲性能, 芳纶织物, 环氧树脂, 真空辅助成型工艺

Abstract:

Objective In order to reduce casualties and improve the overall protection performance of vehicles in warring areas, the protection requirements of composite materials for bullet-proof vehicles are getting higher. Aramid three-dimensional deep-angle interlock (3DDAI) and plain weave fabrics are used as reinforcement materials, and epoxy resin is used as the matrix. The influences of weft density, structure organization and laying method on bending properties of composite materials for armored vehicles are studied.
Method In order to explore the influence of fabric weft density, structure organization and laying method on the bending properties of aramid fabric/epoxy resin composites, 250 mm×250 mm aramid fabric (The warp and weft linear densities of the fabrics are both 111.1 tex is used. For the plain weave fabric, the warp and weft densities are both 10 picks/cm. For the three types of 3DDAI fabrics, the warp density is consistently 30 picks/cm, with weft densities of 30, 33, and 36 picks/cm, respectively, as the reinforcement, epoxy resin E-51 and curing agent polyether amine 230 are used as the matrix. The composite was manufactured using vacuum assisted resin infusion, and the samples under various influencing factors are tested and analyzed on the Instron 5969H universal material testing machine.
Results When the 3DDAI aramid fabric/epoxy resin composite material is subjected to bending load, the bending performance in the weft direction is superior to that in the warp direction. With the increase of weft density, the bending strength and modulus in the weft direction and the bending modulus in the warp direction of the material all show a trend of increasing first and then decreasing, while the bending strength in the warp direction shows a decreasing trend. Moreover, the bending strength in the warp direction of aramid fabric/epoxy resin composites is negatively correlated with the warp buckling degree. The bending strength and modulus in the weft direction of the three-dimensional deep angle interlock composites are better than those of the plain weave, and the bending strength and modulus in the warp direction are smaller than those of the plain structure. The bending strength in the warp direction of aramid fabric/epoxy resin composites prepared by orthogonal laying method (0°/90°/0°/90°) is 257.049 1 MPa and the bending strength in the weft direction is 242.579 0 MPa, indicating that the laying method is beneficial to maximize the potential of improving the bending properties of materials and reduce the difference in bending performance between materials in different directions.
Conclusion When the 3DDAI aramid fabric/epoxy resin composite bears the bending load, the bending properties of the sample show the longitude and latitude anisotropy, in which the bending properties in weft direction are greater than the warp direction. With the increase of weft density, the bending strength in weft direction, bending modulus in weft direction and bending modulus in the warp direction of 3DDAI composites increase first and then decrease, while the bending strength in the warp direction decreases, with the best bending properties when the warp density of the fabric is 30 picks/cm and the weft density is 33 picks/cm. The in weft direction bending properties of 3DDAI aramid fabric/epoxy resin composite are better than that of plain weave, and have better delamination resistance. The properties of aramid fabric/epoxy resin composite material by orthogonal laying method are conducive to maximize the potential of improving the bending performance of the material, while reducing the difference in bending properties between different directions of the material.

Key words: composite material, three-dimensional deep angle interlock, weft density, structural organization, laying method, bending property, aramid fabric, epoxy resin, vacuum assisted resin infusion

中图分类号: 

  • TB332

图1

真空辅助成型工艺示意图 注:1—树脂容器;2—操作台面;3—真空薄膜;4—导流管;5—脱模布;6—芳纶机织物;7—导流网;8—密封胶;9—聚氯乙烯软管;10—树脂收集罐;11—真空泵。"

表1

弯曲试样规格参数"

试样
编号
铺层
铺层
方式
织物
种类
厚度b/
mm
含胶量/
%
面密度/
(g·m-2)
1# 11 单向铺层 平纹A 3.60 41.74 4 531.52
2# 4 单向铺层 三维深
角联B1
4.95 51.33 6 316.16
3# 4 单向铺层 三维深
角联B2
4.90 49.13 6 141.28
4# 4 正交铺层 4.85 48.05 6 009.76
5# 4 对称铺层 4.90 49.16 6 165.12
6# 4 夹芯铺层 4.90 50.03 6 256.48
7# 3 单向铺层 三维深
角联B3
3.70 46.96 4 744.32
8# 4 单向铺层 4.85 45.83 6 161.92

图2

不同铺层方式示意图"

图3

弯曲实验装置示意图"

图4

不同纬密芳纶织物/EP复合材料的弯曲应力-应变曲线"

表2

不同纬密芳纶织物/EP复合材料的弯曲强度"

织物纬密/
(根·cm-1)
经向 纬向
弯曲强度/
MPa
误差值/
MPa
弯曲强度/
MPa
误差值/
MPa
30 206.218 9 1.360 2 325.790 3 3.500 1
33 197.922 6 2.271 2 376.814 2 4.177 6
36 160.423 0 0.260 8 344.999 4 1.481 4

表3

不同纬密芳纶织物/EP复合材料的弯曲模量"

织物纬密/
(根·cm-1)
经向 纬向
弯曲模量/
MPa
误差值/
MPa
弯曲模量/
MPa
误差值/
MPa
30 5 833.605 2 334.751 8 9 875.301 1 166.614 0
33 8 053.890 4 242.804 6 17 163.931 7 253.869 9
36 6 637.609 1 80.141 5 16 524.556 9 524.923 2

图5

不同纬密芳纶织物/EP复合材料试样的截面图"

表4

不同织物结构的芳纶织物/EP复合材料弯曲强度"

织物结构 经向 纬向
弯曲强度/
MPa
误差值/
MPa
弯曲强度/
MPa
误差值/
MPa
平纹 203.708 3 5.802 9 287.583 8 5.477 0
三维深角联 175.302 6 1.502 8 342.678 6 2.222 8

表5

不同织物结构的芳纶织物/EP复合材料弯曲模量"

织物结构 经向 纬向
弯曲模量/
MPa
误差值/
MPa
弯曲模量/
MPa
误差值/
MPa
平纹 1 1604.290 6 516.591 5 12 688.075 9 746.230 9
三维深角联 6 186.345 0 654.185 4 19 427.1395 484.141 9

图6

试样弯曲测试破坏形貌图"

图7

不同铺层方式芳纶织物/EP复合材料的弯曲应力-应变曲线"

表6

不同铺层方式下芳纶织物/EP复合材料弯曲强度"

铺层方式 经向 纬向
弯曲强度/
MPa
误差值/
MPa
弯曲强度/
MPa
误差值/
MPa
单向铺层 197.922 60 2.271 2 376.814 2 4.177 6
正交铺层 257.049 10 4.708 5 242.579 0 1.992 8
对称铺层 225.833 89 2.109 4 223.104 2 1.998 2
夹芯铺层 190.437 90 2.083 0 291.836 8 3.212 7

图8

不同铺层方式下芳纶织物/EP复合材料试样的微观形貌图 注:(Ⅰ)为试样正面破坏形貌;(Ⅱ)为试样未弯曲前形貌;(Ⅲ)为试样背面破坏形貌;(Ⅳ)为试样弯曲实验后破坏形貌。"

[1] DE OLIVEIRA BRAGA F, LOPES P H L M, OLIVEIRA M S, et al. Thickness assessment and statistical optimization of a 3-layered armor system with ceramic front and curaua fabric composite/aluminum alloy backing[J]. Composites Part B: Engineering, 2019, 166: 48-55.
doi: 10.1016/j.compositesb.2018.11.128
[2] ELFVERSSON E, HÖGLUND K. Are armed conflicts becoming more urban?[J]. Cities, 2021, 119: 103356.
doi: 10.1016/j.cities.2021.103356
[3] DRESCH A B, VENTURINI J, ARCARO S, et al. Ballistic ceramics and analysis of their mechanical properties for armour applications: a review[J]. Ceramics International, 2021, 47(7): 8743-8761.
doi: 10.1016/j.ceramint.2020.12.095
[4] WU H L, MIAO C, MU X M, et al. Study on ballistic performance of a spherical cylindrical ceramic armor structure[J]. Journal of Physics: Conference Series, 2023, 2478(7): 072010.
doi: 10.1088/1742-6596/2478/7/072010
[5] YE K C, WANG Z J. Twins enhanced mechanical properties of boron carbide[J]. Ceramics International, 2022, 48(10): 14499-14506.
doi: 10.1016/j.ceramint.2022.01.343
[6] CHAVES Y S, MONTEIRO S N, NASCIMENTO L F C, et al. Mechanical and ballistic properties of epoxy composites reinforced with babassu fibers (Attalea speciosa)[J]. Polymers, 2024, 16(7): 913.
doi: 10.3390/polym16070913
[7] LUZ F S D, GARCIA FILHO F D C, OLIVEIRA M S, et al. Composites with natural fibers and conventional materials applied in a hard armor: a comparison[J]. Polymers, 2020, 12(9): 1920.
doi: 10.3390/polym12091920
[8] JARUPONG J, SASRIMUANG S, ARTNASEAW A. Characteristics of bulletproof plate made from silkworm cocoon waste: hybrid silkworm cocoon waste-reinforced epoxy/UHMWPE composite[J]. Science and Engineering of Composite Materials, 2024, 31: 20240006.
doi: 10.1515/secm-2024-0006
[9] NURAZZI N M, ASYRAF M M, KHALINA A, et al. A review on natural fiber reinforced polymer composite for bullet proof and ballistic applications[J]. Polymers, 2021, 13(4): 646.
doi: 10.3390/polym13040646
[10] BANDARU A K, CHAVAN V V, AHMAD S, et al. Ballistic impact response of Kevlar reinforced thermoplastic composite armors[J]. International Journal of Impact Engineering, 2016, 89: 1-13.
doi: 10.1016/j.ijimpeng.2015.10.014
[11] BAO Y G, GAO X J, WU Y C, et al. Research progress of armor protection materials[J]. Journal of Physics: Conference Series, 2021, 1855(1): 012035.
doi: 10.1088/1742-6596/1855/1/012035
[12] TAN H C, LIU L L, GUAN Y P, et al. Investigation of three-dimensional braided composites subjected to steel projectile impact: experimental study and numerical simulation[J]. Thin-Walled Structures, 2019, 140: 144-156.
doi: 10.1016/j.tws.2019.03.030
[13] HU M Q, ZHANG J J, SUN B Z, et al. Finite element modeling of multiple transverse impact damage behaviors of 3-D braided composite beams at microstructure level[J]. International Journal of Mechanical Sciences, 2018, 148: 730-744.
doi: 10.1016/j.ijmecsci.2018.09.034
[14] HUANG T, WANG Y L, WANG G. Review of the mechanical properties of a 3D woven composite and its applications[J]. Polymer-Plastics Technology and Engineering, 2018, 57(8): 740-756.
doi: 10.1080/03602559.2017.1344857
[15] DAI S, CUNNINGHAM P R, MARSHALL S, et al. Influence of fibre architecture on the tensile, compressive and flexural behaviour of 3D woven composites[J]. Composites Part A: Applied Science and Manufacturing, 2015, 69: 195-207.
doi: 10.1016/j.compositesa.2014.11.012
[16] ZHENG J H, ZHONG L, CHEN H X, et al. Research on bending performance of three-dimensional deep angle interlock kevlar/EP armor material[J]. Materials, 2022, 15(15): 5321.
doi: 10.3390/ma15155321
[17] WANG M X, ZHONG L, CAO H J, et al. Research on bending and ballistic performance of three-dimensional ply-to-ply angle interlock kevlar/EP armor material[J]. Materials, 2022, 15(19): 6994.
doi: 10.3390/ma15196994
[18] MA P B, JIN L M, WU L W. Experimental and numerical comparisons of ballistic impact behaviors between 3D angle-interlock woven fabric and its reinforced composite[J]. Journal of Industrial Textiles, 2019, 48(6): 1044-1058.
doi: 10.1177/1528083718754903
[19] ABTEW M A, BOUSSU F, BRUNIAUX P, et al. Enhancing the ballistic performances of 3D warp interlock fabric through internal structure as new material for seamless female soft body armor development[J]. Applied Sciences, 2020, 10(14): 4873.
doi: 10.3390/app10144873
[20] ABTEW M A, BOUSSU F, BRUNIAUX P, et al. Fabrication and mechanical characterization of dry three-dimensional warp interlock Para-aramid woven fabrics: experimental methods toward applications in composite reinforcement and soft body armor[J]. Materials, 2020, 13(19): 4233.
doi: 10.3390/ma13194233
[21] AKIL H M, OMAR M F, MAZUKI A A M, et al. Kenaf fiber reinforced composites: a review[J]. Materials & Design, 2011, 32(8/9): 4107-4121.
doi: 10.1016/j.matdes.2011.04.008
[22] ABDUL KHALIL H P S, ISSAM A M, AHMAD SHAKRI M T, et al. Conventional agro-composites from chemically modified fibres[J]. Industrial Crops and Products, 2007, 26(3): 315-323.
doi: 10.1016/j.indcrop.2007.03.010
[23] AISYAH H A, PARIDAH M T, KHALINA A, et al. Effects of fabric counts and weave designs on the properties of laminated woven kenaf/carbon fibre reinforced epoxy hybrid composites[J]. Polymers, 2018, 10(12): 1320.
doi: 10.3390/polym10121320
[24] BANDARU A K, SACHAN Y, AHMAD S, et al. On the mechanical response of 2D plain woven and 3D angle-interlock fabrics[J]. Composites Part B: Engineering, 2017, 118: 135-148.
doi: 10.1016/j.compositesb.2017.03.011
[25] SHI J J, CHEN H X, XU N H, et al. The mechanical properties of Kevlar three-dimensional angle-interlock fabrics and composites[J]. The Journal of the Textile Institute, 2025, 116(6): 1102-1114.
doi: 10.1080/00405000.2024.2366704
[1] 李欣田, 周玄, 王展翾, 杜忠华, 徐立志. 层数与铺层方式对多层芳纶平纹织物抗侵彻性能的影响[J]. 纺织学报, 2025, 46(11): 126-136.
[2] 费旌源, 徐乃库, 肖长发. 水可溃散砂质芯模设计及其在中空异形碳纤维复合材料成型中的应用[J]. 纺织学报, 2025, 46(11): 137-146.
[3] 高龙威, 蒋金华, 陈南梁, 邵慧奇. 经编双轴向碳纤维织物增强复合材料的冲击损伤特性[J]. 纺织学报, 2025, 46(11): 147-154.
[4] 郭艳文, 夏蕊, 黄晓梅, 陈红霞, 曹海建. 经纬向紧度比对三维浅交弯联机织复合材料拉伸性能的影响[J]. 纺织学报, 2025, 46(10): 103-110.
[5] 唐曾华, 李宏杰, 毕思伊, 邵光伟, 蒋金华, 陈南梁, 邵慧奇. 增强结构对碳纤维/热塑性聚氨酯柔性复合材料电磁屏蔽性能的影响[J]. 纺织学报, 2025, 46(10): 111-119.
[6] 顾戚惠, 阳知乾, 王海楼, 魏发云, 张伟. 机织间隔织物增强水泥基复合材料的制备及其力学性能[J]. 纺织学报, 2025, 46(10): 120-128.
[7] 唐春霞, 王一帆, 毛云山, 刘健, 付少海. 电磁屏蔽用纤维素基复合材料结构设计的研究进展[J]. 纺织学报, 2025, 46(09): 36-45.
[8] 陈晴宇, 陆春红, 张斌, 晋义凯, 黄琪帏, 王超, 丁彬, 俞建勇, 王先锋. 碳纤维增强水泥基灌浆料的制备及其性能[J]. 纺织学报, 2025, 46(08): 120-126.
[9] 刘旭东, 宋政吉, 陈世昌, 陈文兴. 改性环氧树脂涂覆聚酰亚胺纤维的表面性能[J]. 纺织学报, 2025, 46(08): 18-27.
[10] 张一帆, 安柳絮, 闫英杰, 邹齐, 刘晓志, 郭俊华, 陈利. 三维机织复合材料T型接头的拉伸性能[J]. 纺织学报, 2025, 46(07): 128-135.
[11] 张毅, 沈殷, 高金霞, 郁崇文. 棕榈纤维吸声复合材料的老化性能[J]. 纺织学报, 2025, 46(06): 127-134.
[12] 顾文敏, 蒋高明, 刘海桑, 李炳贤. 基于网格模型的全成形裙装三维仿真[J]. 纺织学报, 2025, 46(05): 214-221.
[13] 黎靖康, 黄亮, 陈诗诗, 毕曙光, 冉建华, 唐加功. 苄基缩水甘油醚改性环氧类玻璃高分子材料的自修复与再加工性能[J]. 纺织学报, 2025, 46(04): 20-28.
[14] 吕丽华, 潘佳欣, 伍成龙. 废弃玉米芯颗粒的结构及其复合材料吸声性能[J]. 纺织学报, 2025, 46(04): 96-102.
[15] 李皎, 辛世纪, 陈利, 易伟, 陈小明. 双机器人分区针刺成形轨迹规划[J]. 纺织学报, 2025, 46(03): 207-215.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!