纺织学报 ›› 2025, Vol. 46 ›› Issue (08): 45-52.doi: 10.13475/j.fzxb.20241001501
SHI Hu, WANG He(
), WANG Hongjie, PAN Xianmiao
摘要: 为制备高性能储能器件隔膜材料,采用聚丙烯腈(PAN)、淀粉、聚乙烯吡咯烷酮(PVP)为前驱体,先后通过静电纺丝法、水溶解和戊二醛交联改性,获得多孔交联的纳米纤维膜。分别测试了纳米纤维膜的表面形貌、接触角、孔隙率以及力学性能。结果表明:在交联处理后的纳米纤维膜中纤维之间出现黏结点,纤维直径为100~300 nm,改性后纤维膜的亲水性、力学强度和孔隙率均得到一定程度的提高;当三者的质量比为5∶4∶1时,纳米纤维膜的综合性能最佳,厚度为0.09 mm,拉伸断裂强度为11.44 MPa,接触角为36.46°,孔隙率高达88.02%;此外,当其作为隔膜应用于超级电容器中,所制备的器件表现出较好的电化学性能,经过5 000次充放电循环后比电容保持率高达96.22%,显示出优异的循环稳定性。
中图分类号:
| [1] | 李琴, 李兴兴, 解芳芳, 等. 静电纺丝和炭化法制备纳米纤维素储能材料研究进展[J]. 纺织学报, 2022, 43(5): 178-184. |
| LI Qin, LI Xingxing, XIE Fangfang, et al. Research progress in preparation of nanocelluloses energy storage materials by electrospinning and carbonization[J]. Journal of Textile Research, 2022, 43(5): 178-184. | |
| [2] | 王赫, 王洪杰, 赵紫奕, 等. 多孔与连通结构碳纳米纤维电极的设计及其电化学性能[J]. 纺织学报, 2023, 44 (6): 41-49. |
| WANG He, WANG Hongjie, ZHAO Ziyi, et al. Design and electrochemical properties of porous and connected carbon nanofiber electrodes[J]. Journal of Textile Research, 2023, 44(6): 41-49. | |
| [3] | WU Hongqin, MU Jiahui, XU Yanglei, et al. Heat-resistant, robust, and hydrophilic separators based on regenerated cellulose for advanced supercapacitors[J]. Small, 2023. DOI: 10.1002/smll.202205152. |
| [4] | HUANG Haocun, WU Hongqin, ZHANG Xiao, et al. Enhanced ion transport in ultrathin regenerated cellulose supercapacitor separators[J]. Journal of Materials Chemistry C, 2024, 12(25): 9189-9199. |
| [5] | JIN Jialun, GENG Xiangshun, CHEN Qiang, et al. A better Zn-ion storage device: recent progress for Zn-ion hybrid supercapacitors[J]. Nano-Micro Letters, 2022. DOI: 10.1007/s40820-022-00793-w. |
| [6] | KIM Kwang M, LEE Young G, SHIN Dong O, et al. Supercapacitive properties of activated carbon electrode in potassium-polyacrylate hydrogel electrolytes[J]. Journal of Applied Electrochemistry, 2016, 46(54): 567-573. |
| [7] | WANG He, WANG Hongjie, SUN Ran, et al. Preparation of hierarchical micro-meso porous carbon and carbon nanofiber from polyacrylonitrile/polysulfone polymer via one-step carbonization for supercapacitor electrodes[J]. Electrochimica Acta, 2023. DOI: 10.1016/j.electacta.2023.141827. |
| [8] | XU Daman, HENG Yingqi, QIN Xiang, et al. Membrane-based symmetric supercapacitors composed of cellulose solution-derived polydopamine-modified separators and polypyrrole/graphene-doped polydopamine-modified electrodes[J]. Journal of Energy Storage, 2022. DOI: 10.1016/j.est.2022.104640. |
| [9] | YAN Bing, ZHENG Jiaojiao, FENG Li, et al. All-cellulose-based high-rate performance solid-state supercapacitor enabled by nitrogen doping and porosity tuning[J]. Diamond and Related Materials, 2022. DOI: 10.1016/j.diamond.2022.109238. |
| [10] | WANG He, WANG Hongjie, RUAN Fangtao, et al. High-porosity carbon nanofibers prepared from polyacrylonitrile blended with amylose starch for application in supercapacitors[J]. Materials Chemistry and Physics, 2023. DOI: 10.1016/j.matchemphys.2022.126896. |
| [11] | HUSSAIN Arshad, MOHAMED Mostafa M, AIJAZ Muhammad O, et al. Electrospun PEI/PAN membrane for advanced Zn ion hybrid supercapacitors[J]. Journal of Energy Storage, 2024. DOI: 10.1016/j.est.2024.110974. |
| [12] | TANG Liping, WU Yankang, HE Dan, et al. Electrospun PAN membranes toughened and strengthened by TPU/SHNT for high-performance lithium-ion batteries[J]. Journal of Electroanalytical Chemistry, 2023. DOI: 10.1016/j.jelechem.2023.117181. |
| [13] | FONSECA Laura M, CRUZ Elder P d, CRIZEL Rosane L, et al. New advances of electrospun starch fibers, encapsulation, and food applications: a review[J]. Trends in Food Science & Technology, 2024. DOI: 10.1016/j.tifs.2024.104467. |
| [14] | ZOU Yiyuan, YUAN Chao, CUI Bo, et al. Formation of high amylose corn starch/konjac glucomannan composite film with improved mechanical and barrier properties[J]. Carbohydrate Polymers, 2021. DOI: 10.1016/j.carbpol.2020.117039. |
| [15] |
WANG Wenyu, JIN Xin, ZHU Yonghao, et al. Effect of vapor-phase glutaraldehyde crosslinking on electrospun starch fibers[J]. Carbohydrate Polymers, 2016, 140: 356-361.
doi: 10.1016/j.carbpol.2015.12.061 pmid: 26876862 |
| [16] | WEI Haonan, LIU Xinyue, WANG Chenchen, et al. Characteristics of corn starch/polyvinyl alcohol composite film with improved flexibility and UV shielding ability by novel approach combining chemical cross-linking and physical blending[J]. Food Chemistry, 2024. DOI: 10.1016/j.foodchem.2024.140051. |
| [1] | 刘健, 潘山山, 刘泳汝, 尹兆松, 任康佳, 赵庆浩. 多尖端锯齿状静电纺丝喷头的设计及优化[J]. 纺织学报, 2025, 46(08): 217-225. |
| [2] | 马晓远, 包伟. 防水透湿纳米纤维复合织物研究现状及发展趋势[J]. 纺织学报, 2025, 46(08): 254-262. |
| [3] | 张利平, 郭羽晴, 丁博, 孙洁. 芳纶纳米纤维/热塑性聚氨酯复合微孔膜与可呼吸覆膜织物制备及其性能[J]. 纺织学报, 2025, 46(07): 19-27. |
| [4] | 徐丽亚, 汪瑱, 杨鸿杰, 汪蔚. 氧化锌-银/生物基聚酰胺56纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2025, 46(07): 37-45. |
| [5] | 林玉婷, 许仕林, 胡毅. 多色彩热塑性聚氨酯/聚丙烯腈纳米纤维纱线的制备及其性能[J]. 纺织学报, 2025, 46(07): 78-86. |
| [6] | 贾陈诺瓦, 张勇, 朱威岩, 刘赛, 唐宁. 芯纱种类对聚丙烯腈纳米纤维导电包芯纱性能的影响[J]. 纺织学报, 2025, 46(07): 87-95. |
| [7] | 陈亚娟, 郭瀚宇, 张陈恬, 李欣欣, 张雪萍. 聚乙烯醇/海藻酸钠/锦纶66复合水凝胶包芯纱的制备及其吸湿性能[J]. 纺织学报, 2025, 46(06): 103-110. |
| [8] | 丁圆, 赵云霞, 靳高岭, 杨涛, 徐静, 柯福佑, 陈烨. 阻燃聚丙烯腈长丝织物的层层自组装法制备及其性能[J]. 纺织学报, 2025, 46(06): 168-177. |
| [9] | 余厚咏, 黄程玲, 陈毅, 高智英. 天然纤维素的多维结构演变及其功能材料研究进展[J]. 纺织学报, 2025, 46(06): 45-55. |
| [10] | 丁振华, 袁开宇, 周敬, 叶冬冬. 面向渗透能收集的纤维素纳米流体系统研究进展[J]. 纺织学报, 2025, 46(06): 56-62. |
| [11] | 王春翔, 李姣, 解开放, 薛宏坤, 徐广标. 天麻多糖/聚乙烯醇静电纺抗菌保鲜膜的制备与性能[J]. 纺织学报, 2025, 46(06): 73-79. |
| [12] | 张嘉诚, 于影, 左雨欣, 顾志清, 汤腾飞, 陈洪立, 吕勇. 聚丙烯腈/二硫化钼纤维薄膜的挠曲电效应与扭转传感特性[J]. 纺织学报, 2025, 46(06): 80-87. |
| [13] | 邱月, 杨询, 李昊, 李海东, 吴国忠, 张彩丹. 聚琥珀酰亚胺纳米纤维膜改性及其染料吸附性能[J]. 纺织学报, 2025, 46(06): 88-95. |
| [14] | 孙洁, 郭羽晴, 屈芸, 张利平. 芳纶纳米纤维/MXene同轴纤维电极制备及其性能[J]. 纺织学报, 2025, 46(05): 125-134. |
| [15] | 王薇, 高建南, 裴笑涵, 陆鑫, 孙银银, 吴建兵. 纤维素/甲基三甲氧基硅烷气凝胶的制备及其油水分离效能[J]. 纺织学报, 2025, 46(05): 135-142. |
|
||