Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (07): 29-35.doi: 10.13475/j.fzxb.20210506707

• Fiber Materials • Previous Articles     Next Articles

Preparation and properties of polyurethane-based carbon nanotube/liquid metal conductive fibers

XUE Chao1,2, ZHU Hao1,2, YANG Xiaochuan1,2, REN Yu1,2, LIU Wanwan1,2()   

  1. 1. National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, Nantong University, Nantong, Jiangsu 226019, China
    2. School of Textile and Clothing, Nantong University, Nantong, Jiangsu 226019, China
  • Received:2021-05-25 Revised:2022-03-29 Online:2022-07-15 Published:2022-07-29
  • Contact: LIU Wanwan E-mail:liuww@ntu.edu.cn

Abstract:

In order to improve the elastic properties of carbon nanotubes as conductive fillers, carbon nanotubes (CNT) and liquid metal (LM) were used as conductive fillers, thermoplastic polyurethane (TPU) was used as matrix, N, N-dimethylformamide was used as solvent, and deionized water was used as coagulation bath to produce the CNT/LM/TPU conductive fibers through the wet spinning process. The effects of LM and CNT on the structure and properties of fibers were studied. The results show that when the conductive filler content is 40% for LM and 10% for CNT, the mechanical properties of CNT/LM/TPU fiber were greatly improved with the fracture stress reaching 10.16 MPa and the elongation at break 252%. The CNT/LM/TPU fiber has good electrical conductivity, which is 5.41 S/m. Circuit experiments show that the fiber can be used as a wire lighting circuit, and the circuit can still have current through under the strain levels of 100% and 200%. CNT/LM/TPU fiber has excellent recovery performance, and it still has stable resistance recovery after 20 repeated tensile loading. In addition, the fiber also had good antibacterial properties, and the antibacterial rate against Staphylococcus aureus reaches 92.61%.

Key words: carbon nanotube, liquid metal, thermoplastic polyurethane, conductive fiber, wet spinning

CLC Number: 

  • TQ190.8

Tab.1

Spinning solution formula%"

样品编号 TPU质量分数 CNT质量分数 LM质量分数
1# 100
2# 95 5
3# 90 10
4# 60 40
5# 55 5 40
6# 50 10 40

Fig.1

SEM images of TPU,CNT/TPU and CNT/LM/TPU fiber"

Fig.2

Cross-section SEM image (a) and EDS images (Ga(b),In(c),Sn(d)) of 6# fiber"

Fig.3

Energy spectrum analysis results of 6# fiber"

Fig.4

Stress-strain tensile curve"

Tab.2

Conductivity of different fiber samples"

样品编号 电导率/(S·m-1)
1#
2# 6.4×10-2
3# 1.59
4#
5# 2.96
6# 5.41

Fig.5

Circuit test result of CNT/LM/TPU fiber as conductor.(a) Lamp brightness before and after twisted;(b) Lamp brightness before and after stretching"

Fig.6

Conductive model of fiber tensile process.(a) Before stretching; (b) During stretching; (c) After stretching"

Fig.7

Changes of relative resistance of sample 6# under different strain stretching. (a)10% strain; (b)30% strain; (c)50% strain; (d)100% strain"

Tab.3

Antibacterial rate of different fiber samples"

样品编号 空白对照样24 h
活菌浓度/个
抗菌试样24 h
活菌浓度/个
抑菌率/%
3# 213×104 132×104 38.03
6# 203×104 15×104 92.61
[1] 郭俊敏. 导电纤维的性能和制备[J]. 金山油化纤, 2003, 22(2):34-37.
GUO Junmin. Properties and preparation of conductive fibers[J]. Jinshan Oil Chemical Fiber, 2003, 22 (2):34-37.
[2] 程芳华, 于云飞, 高嘉辰, 等. 热塑性聚氨酯/碳纳米管湿纺导电纳米复合纤维的应变响应行为研究[J]. 塑料科技, 2018, 46(9):56-60.
CHENG Fanghua, YU Yunfei, GAO Jiachen, et al. Strain response behavior of thermoplastic polyurethane/carbon nanotubes wet spinning conductive nanocomposite fibers[J]. Plastic Science and Technology, 2018, 46(9):56-60.
[3] LAN L, JIANG C, YAO Y, et al. A stretchable and conductive fiber for multifunctional sensing and energy harvesting[J]. Nano Energy, 2021. DOI: 10.1016/j.nanoen.2021.105954.
doi: 10.1016/j.nanoen.2021.105954.
[4] COSTALIN M, MJEJRI I, PENIN N, et al. Films of directionally oriented carbon nanotubes as counter electrodes for electrochromic devices[J]. Journal of Physics and Chemistry of Solids, 2021. DOI: 10.1016/j.jpcs.2021.110035.
doi: 10.1016/j.jpcs.2021.110035.
[5] ZHANG H, WU W, MA H, et al. Hollow graphene fibres of highly ordered structure via coaxial wet spinning with application to multi-functional flexible wearables[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021. DOI: 10.1016/j.colsurfa.2021.126193.
doi: 10.1016/j.colsurfa.2021.126193.
[6] ZHANG X, LU W, ZHOU G, et al. Understanding the mechanical and conductive properties of carbon nanotube fibers for smart electronics[J]. Advanced Materials, 2020.DOI: 10.1002/adma.201902028.
doi: 10.1002/adma.201902028.
[7] 郑少明, 赖祥辉, 林本术. 导电纤维的发展与应用[J]. 中国纤检, 2016, 12(9):143-144.
ZHENG Shaoming, LAI Xianghui, LIN Benshu. The development and application of conductive fibers[J]. China Fiber Inspection, 2016, 12 (9):143-144.
[8] 曾敏, 伍江涛, 冯猛, 等. 碳系填料在聚合物基导电复合材料中的应用[J]. 橡胶工业, 2010, 57(6):378-382.
ZENG Min, WU Jiangtao, FENG Meng, et al. Application of carbon filler in polymer-based conductive composites[J]. Rubber Industry, 2010, 57 (6):378-382.
[9] 张国玺, 周笑薇. 多巴胺/银/聚氨酯导电复合薄膜的制备[J]. 合成树脂及塑料, 2016, 33(5):36-38.
ZHANG Guoxi, ZHOU Xiaowei. Preparation of dopamine/silver/polyurethane conductive composite films[J]. Synthetic Resins and Plastics, 2016, 33 (5):36-38.
[10] 朱华, 钟培英, 蒲青松, 等. 炭黑导电浆料的制备及电性能分析[J]. 山东化工, 2021, 50(4):46-48.
ZHU Hua, ZHONG Peiying, PU Qingsong, et al. Preparation and electrical properties analysis of carbon black conductive paste[J]. Shandong Chemical Industry, 2021, 50 (4):46-48.
[11] BANERJEE S, KAR K K. Characteristics of carbon nanotubes[J]. Springer Series in Materials Science, 2020, 300(14):179-214.
[12] YUN G, TANG S, LU H, et al. Hybrid-filler stretchable conductive composites: from fabrication to application[J]. Small Science, 2021.DOI: 10.1002/smsc.202000080.
doi: 10.1002/smsc.202000080.
[13] JEONG H D, KIM S G, CHOI G M, et al. Theoretical and experimental investigation of the wet-spinning process for mechanically strong carbon nanotube fibers[J]. Chemical Engineering Journal, 2021.DOI: 10.1016/j.cej.2021.128650.
doi: 10.1016/j.cej.2021.128650.
[14] 邓卫斌, 朱瑞, 李军, 等. 碳纳米管/聚氨酯导电复合材料研究进展[J]. 塑料工业, 2018, 46(8):1-7.
DENG Weibin, ZHU Rui, LI Jun, et al. Research progress of carbon nanotubes/polyurethane conductive composites[J]. Plastic Industry, 2018, 46 (8): 1-7.
[15] 郭怡, 严磊, 陈宇哲, 等. 碳纳米管改性热塑性聚氨酯基纳米复合材料研究进展[J]. 工程塑料应用, 2019, 47(6):139-142.
GUO Yi, YAN Lei, CHEN Yuzhe, et al. Research progress of carbon nanotubes modified thermoplastic polyurethane matrix nanocomposites[J]. Application of Engineering Plastics, 2019, 47(6):139-142.
[16] 王晴雯, 董仁琼, 吉笑盈, 等. TPU/EVA/CNT双逾渗导电复合材料的制备和性能[J]. 高分子材料科学与工程, 2019, 35(5):104-109.
WANG Qingwei, DONG Renqiong, JI Xiaoying, et al. Preparation and properties of TPU/EVA/CNT double percolation conductive composites[J]. Polymer Materials Science and Engineering, 2019, 35(5) :104-109.
[17] MOU L, QI J, TANG L, et al. Highly stretchable and biocompatible liquid metal-elastomer conductors for self-healing electronics[J]. Small, 2020.DOI: 10.1002/smll.202005336.
doi: 10.1002/smll.202005336.
[18] KWON K Y, TRUONG V K, KRISNADI F, et al. Surface modification of gallium-based liquid metals: mechanisms and applications in biomedical sensors and soft actuators[J]. Advanced Intelligent Systems, 2021.DOI: 10.1002/aisy.202000159.
doi: 10.1002/aisy.202000159.
[19] FASSLER A, MAJIDI C. Liquid-phase metal inclusions for a conductive polymer composite[J]. Advanced Materials, 2015, 27(11):1928-1932.
doi: 10.1002/adma.201405256
[20] YUN G, TANG S, SUN S, et al. Liquid metal-filled magnetorheological elastomer with positive piezoconduc-tivity[J]. Nature Communications, 2019, 10(1):1-9.
doi: 10.1038/s41467-018-07882-8
[21] LIU H, LI Y, DAI K, et al. Electrically conductive thermoplastic elastomer nanocomposites at ultralow graphene loading levels for strain sensor applica-tions[J]. Journal of Materials Chemistry C, 2016, 4(1):157-166.
doi: 10.1039/C5TC02751A
[22] 刘畅, 韩华, 叶婷婷, 等. 耐阴离子洗涤剂高效抗菌棉织物的制备及性能[J]. 纺织科学与工程学报, 2021, 38(1):23-29.
LIU Chang, HAN Hua, YE Tingting, et al. Preparation and properties of high-efficiency antibacterial cotton fabric with anion-resistant detergent[J]. Journal of Textile Science and Engineering, 2021, 38 (1):23-29.
[23] WEN M, SUN X, SU L, et al. The electrical conductivity of carbon nanotube/carbon black/polypropylene composites prepared through multistage stretching extrusion[J]. Polymer, 2012, 53(7):1602-1610.
doi: 10.1016/j.polymer.2012.02.003
[24] 曾尤, 刘鹏飞, 赵龙, 等. 碳纳米管导电网络结构对复合材料拉伸变形的响应性[J]. 新型炭材料, 2013, 28(2):88-93.
ZENG You, LIU Pengfei, ZHAO Long, et al. Response of carbon nanotube conductive network structure to tensile deformation of composites[J]. New Carbon' Materials, 2013, 28 (2):88-93.
[25] 吕毅华, 李昕, 刘周, 等. 镓在抗菌方面的研究进展[J]. 中国抗生素杂志, 2018, 43(4):394-400.
LÜ Yihua, LI Xin, LIU Zhou, et al. Research progress of gallium in antibacterial[J]. Chinese Journal of Antibiotics, 2018, 43 (4):394-400.
[26] 熊建钧, 严骏杰, 杨敏. 镓基液态金属微/纳米液滴的合成及其在生物医学中的应用[J]. 生物医学工程研究, 2020, 39(4):425-430.
XIONG Jianjun, YAN Junjie, YANG Min. Synthesis of gallium-based liquid metal micro/nano droplets and their applications in biomedicine[J]. Biomedical Engineering Research, 2020, 39 (4):425-430.
[1] NIE Wenqi, SUN Jiangdong, XU Shuai, ZHENG Xianhong, XU Zhenzhen. Research progress in supercapacitors based on flexible textile fibers [J]. Journal of Textile Research, 2022, 43(07): 200-206.
[2] YAO Mingyuan, LIU Ningjuan, WANG Jianing, XU Fujun, LIU Wei. Electrothermal properties of functionalization carbon nanotube composite films and films twisted yarns [J]. Journal of Textile Research, 2022, 43(05): 86-91.
[3] LU Qianqian, TANG Junxiong, LIU Yuanjun, ZHAO Xiaoming. Research progress in preparation of carbon nanotubes based wave absorbing composites and its applications in textile field [J]. Journal of Textile Research, 2022, 43(04): 187-193.
[4] XU Xiaotong, JIANG Zhenlin, ZHENG Qinchao, ZHU Keyu, WANG Chaosheng, KE Fuyou. Effect of thermal conductive structure on non-isothermal crystallization behavior of polyethylene terephthalate [J]. Journal of Textile Research, 2022, 43(03): 44-49.
[5] LIN Meixia, WANG Jiawen, XIAO Shuang, WANG Xiaoyun, LIU Hao, HE Yin. Preparation and performance of high sensitive ultra-compressed bio-based carbonized flexible pressure sensor [J]. Journal of Textile Research, 2022, 43(02): 61-68.
[6] GUO Zijiao, LI Yue, ZHANG Rui, LU Zan. Preparation and properties of polyaniline/Ti3C2Tx/carbon nanotube composite fiber-based electrodes [J]. Journal of Textile Research, 2022, 43(02): 74-80.
[7] XU Shilin, YANG Shiyu, ZHANG Yaru, HU Liu, HU Yi. Preparation and properties of thermoplastic polyurethane/tefluororone amorphous fluoropolymer superhydrophobic nanofiber membranes [J]. Journal of Textile Research, 2021, 42(12): 42-42.
[8] CHEN Zihan, YAO Yongbo, SHENG Junlu, YAN Zhiyong, ZHANG Yumei, WANG Huaping. Preparation and properties of cellulose/calcium alginate blend fiber [J]. Journal of Textile Research, 2021, 42(12): 15-20.
[9] CHEN Xian, LI Mengmeng, ZHAO Xin, DONG Jie, TENG Cuiqing. Preparation and microstructure control of aerogel fibers based on aramid nanofibers [J]. Journal of Textile Research, 2021, 42(11): 17-23.
[10] WAN Zhenkai, JIA Minrui, BAO Weichen. Optimal configuration of embedded position and number of carbon nanotube yarns in 3-D braided composites [J]. Journal of Textile Research, 2021, 42(09): 76-82.
[11] ZHANG Yaru, HU Yi, CHENG Zhongling, XU Shilin. Preparation and energy storage properties of polyacrylonitrile-based Si/C/carbon nanotube composite carbon nanofiber membrane [J]. Journal of Textile Research, 2021, 42(08): 49-56.
[12] DAI Yang, YANG Nannan, XIAO Yuan. Preparation and properties of resistive flexible humidity sensors using electrospun carbon nanotubes [J]. Journal of Textile Research, 2021, 42(06): 51-56.
[13] TANG Jian, YAN Tao, PAN Zhijuan. Research progress of flexible strain sensors based on conductive composite fibers [J]. Journal of Textile Research, 2021, 42(05): 168-177.
[14] WANG Lu, HAN Xue, LOU Lin, HE Linghua, ZHOU Xiaohong. Development of electric-heating protective gloves and ergonomic experiments under extreme cold environment [J]. Journal of Textile Research, 2021, 42(05): 150-154.
[15] ZHANG Runke, LÜ Wangyang, CHEN Wenxing. Preparation and electrochemical properties of carbon fiber fabric sensors co-modified by cobalt phthalocyanine and carbon nanotubes [J]. Journal of Textile Research, 2021, 42(04): 121-126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 33 -34 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 35 -36 .
[3] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 107 .
[4] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 109 -620 .
[5] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(01): 1 -9 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 101 -102 .
[7] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 103 -104 .
[8] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 105 -107 .
[9] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 108 -110 .
[10] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 111 -113 .