Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (01): 43-48.doi: 10.13475/j.fzxb.20210904506

• Fiber Materials • Previous Articles     Next Articles

Research progress in flame retardant cellulose aerogel

FANG Yinchun1,2(), SUN Weihao1   

  1. 1. School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui 241000, China
    2. Anhui Textile Industry Science and Technology Public Service Platform, Wuhu, Anhui 241000, China
  • Received:2021-09-13 Revised:2021-11-04 Online:2022-01-15 Published:2022-01-28

Abstract:

In order to improve the flame retardancy of cellulose aerogel and broaden its application field, the classification and preparation of cellulose aerogel are introduced. The research progress in inorganic flame retardants, organic flame retardants and organic/inorganic composite flame retardants were reviewed. The advantages and disadvantages of all types of flame retardant cellulose aerogels were compared and analyzed, among which, organic/inorganic composite flame retardants have the advantages of both of two single flame retardants, showing high flame retardant efficiency, though there are also poor compatibility and complex preparation process problems. The future development trend of cellulose aerogel flame retardant research was prospected, and it was pointed out that the bio-based flame retardant with green, environmental protection, high efficiency and good compatibility would become the main research direction of cellulose aerogel flame retardant in the future.

Key words: cellulose, aerogel, flammability, flame retardant modification, flame retardant, organic/inorganic composite flame retardant

CLC Number: 

  • TS195.592

Tab.1

Advantages and disadvantages of flame retardants for flame retardant cellulose aerogels"

阻燃剂类型 优点 缺点
无机阻燃剂 安全无毒、热稳定性好、价格便宜 添加量大、相容性差、单一阻燃效果不佳
有机阻燃剂 相容性好、阻燃效率高 产生有毒气体、污染环境
有机/无机阻燃剂 阻燃效率高 相容性差、制备工艺复杂
[1] 段玉洁, 梁程耀, 朱浩彤, 等. 纤维素气凝胶的制备及应用[J]. 塑料科技, 2021, 49(5): 93-98.
DUAN Yujie, LIANG Chengyao, ZHU Haotong, et al. Preparation and application of cellulose aerogel[J]. Plastics Science and Technology, 2021, 49(5): 93-98.
[2] 王猛, 唐丽, 高莉, 等. 纤维素/聚乙烯醇复合气凝胶制备及其性能研究[J]. 林产化学与工业, 2021, 41(3): 95-102.
WANG Meng, TANG Li, GAO Li, et al. Preparation and properties of cellulose/PVA composite aerogels[J]. Chemistry and Industry of Forest Products, 2021, 41(3): 95-102.
[3] 段一凡, 张光磊, 史新月, 等. 纤维素气凝胶的制备与应用研究进展[J]. 陶瓷学报, 2021, 42(1): 36-43.
DUAN Yifan, ZHANG Guanglei, SHI Xinyue, et al. Research progress in preparation and application of cellulose aerogels[J]. Journal of Ceramics, 2021, 42(1): 36-43.
[4] 夏成, 董可海, 赖帅光, 等. 气凝胶复合材料的制备改性及应用研究进展[J]. 舰船电子工程, 2020, 40(6): 1-4, 17.
XIA Cheng, DONG Kehai, LAI Shuaiguang, et al. Research progress on preparation modification and application of aerogel composites[J]. Ship Electronic Engineering, 2020, 40(6): 1-4, 17.
[5] 韩健健, 胡勇杰, 刘谷. 服装用气凝胶材料的贴合结构设计[J]. 染整技术, 2021, 43(6): 34-37.
HAN Jianjian, HU Yongjie, LIU Gu. Fitting structure design of aerogel material for clothing[J]. Textile Dyeing and Finishing Journal, 2021, 43(6): 34-37.
[6] 张鑫, 崔升, 唐祥龙, 等. 纤维素基气凝胶材料及其应用研究进展[J]. 中国材料进展, 2017, 36(7): 512-520.
ZHANG Xin, CUI Sheng, TANG Xianglong, et al. Application research progress of cellulose-based aerogels[J]. Materials China, 2017, 36(7): 512-520.
[7] LONG L Y, WENG Y X, WANG Y Z. Cellulose aerogels: synjournal, applications, and prospects[J]. Polymers, 2018, 10(6): 623.
doi: 10.3390/polym10060623
[8] 党力, 吕智慧. 无机阻燃剂的研究进展[J]. 中国塑料, 2018, 32(9): 1-8.
DANG Li, LÜ Zhihui, Research progress on inorganic flame retardants[J]. China Plastics, 2018, 32(9): 1-8.
[9] HAN Y, ZHANG X, WU X, et al. Flame retardant, heat insulating cellulose aerogels from waste cotton fabrics by in situ formation of magnesium hydroxide nanoparticles in cellulose gel nanostructures.[J] ACS Sustainable Chemistry & Engineering, 2015, 3(8): 1853-1859.
[10] HE C, HUANG J, LI S, et al. Mechanically resistant and sustainable cellulose-based composite aerogels with excellent flame retardant, sound-absorption, and superantiwetting ability for advanced engineering materials[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(1): 927-936.
[11] YUAN B, ZHANG J M, YU J, et al. Transparent and flame retardant cellulose/aluminum hydroxide nanocomposite aerogels[J]. Science China(Chemistry), 2016, 59(10): 1335-1341.
[12] LUO X L, SHEN J Y, MA Y N, et al. Robust, sustainable cellulose composite aerogels with outstanding flame retardancy and thermal insulation[J]. Carbohydrate Polymers, 2020, 230:115623.
doi: 10.1016/j.carbpol.2019.115623
[13] 鲁祎辰, 杨伟. 羧甲基纤维素/锌铝层状双氢氧化物气凝胶的制备与性能[J]. 安徽化工, 2017, 43(6): 72-74.
LU Yichen, YANG Wei. Preparation and characteristics of carboxymethyl cellulose/ZnAl-layered double hydroxide composite aerogels[J]. Anhui Chemical Industry, 2017, 43(6): 72-74.
[14] HU W B, LU L B, LI Z Y, et al. A facile slow-gel method for bulk Al-doped carboxymethyl cellulose aerogels with excellent flame retardancy[J]. Carbohydrate Polymers, 2019, 207:352-361.
doi: 10.1016/j.carbpol.2018.11.089
[15] YANG L, MUKHOPADHYAY A, JIAO Y, et al. Ultralight, highly thermally insulating and fire resistant aerogel by encapsulating cellulose nanofibers with two-dimensional MoS2[J]. Nanoscale, 2017, 9(32): 11452.
doi: 10.1039/C7NR02243C
[16] 罗静. TiO2/纤维素气凝胶复合多功能保温材料的制备与性能研究[D]. 昆明:昆明理工大学, 2019: 83-88.
LUO Jing. Preparation and properties of TiO2/cellulose aerogel composite multifunctional insulation material[D]. Kunming :Kunming University of Science and Technology, 2019:83-88.
[17] YUAN B, ZHANG J M, MI Q Y, et al. Transparent cellulose-silica composite aerogels with excellent flame retardancy via in situ sol-gel process[J]. ACS Sustainable Chemistry & Engineering, 2017, 5:11117-11123.
[18] 党丹旸, 崔灵燕, 王亮, 等. 纤维素纳米纤维/纳米蒙脱土复合气凝胶制备及其结构与性能[J]. 纺织学报, 2020, 41(2): 1-6.
DANG Danyang, CUI Lingyan, WANG Liang, et al. Preparation and properties of cellulose nanofiber/montmorillonite composite aerogels[J]. Journal of Textile Research, 2020, 41(2): 1-6.
doi: 10.1177/004051757104100101
[19] DONIUS A E, LIU A, BERGLUND L A, et al. Superior mechanical performance of highly porous, anisotropic nanocellulose-montmorillonite aerogels prepared by freeze casting[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 37:88-99.
doi: 10.1016/j.jmbbm.2014.05.012
[20] GUPTA P, VERMA C, MAJI P K. Flame retardant and thermally insulating clay based aerogel facilitated by cellulose nanofibers[J]. The Journal of Supercritical Fluids, 2019, 152:104537.
doi: 10.1016/j.supflu.2019.05.005
[21] WANG L, SANCHEZ-SOTO M. Green bio-based aerogels prepared from recycled cellulose fiber suspensions[J]. RSC Advances, 2015, 5(40): 31384-31391.
doi: 10.1039/C5RA02981C
[22] HUANG Y J, ZHOU T, HE S, et al. Flame-retardant polyvinyl alcohol/cellulose nanofibers hybrid carbon aerogel by freeze drying with ultra-low phosphorus[J]. Applied Surface Science, 2019, 497:143775.
doi: 10.1016/j.apsusc.2019.143775
[23] GUO W W, WANG X, ZHANG P, et al. Nano-fibrillated cellulose-hydroxyapatite based composite foams with excellent fire resistance[J]. Carbohydrate Polymers, 2018, 195:71-78.
doi: 10.1016/j.carbpol.2018.04.063
[24] DU X, QIU J, DENG S, et al. Flame-retardant and form-stable phase change composites based on black phosphorus nanosheets/cellulose nanofiber aerogels with extremely high energy storage density and superior solar-thermal conversion efficiency[J]. Journal of Materials Chemistry A, 2020, 8(28): 14126-14134.
doi: 10.1039/D0TA05078D
[25] WICKLEIN B, KOCJAN D, CAROSIO F, et al. Tuning the nanocellulose-borate interaction to achieve highly flame retardant hybrid materials[J]. Chemistry of Materials, 2016, 28(7): 1985-1989.
doi: 10.1021/acs.chemmater.6b00564
[26] 陈艳果, 李志伟, 李小红, 等. 纤维素/氧化石墨烯复合气凝胶的制备及其阻燃性能研究[J]. 中国塑料, 2019, 33(1): 38-44.
CHEN Yanguo, LI Zhiwei, LI Xiaohong, et al. Preparation and flame-retardant performance of cellulose/graphene oxide composite aerogels[J]. China Plastics, 2019, 33(1): 38-44.
[27] 宁登文. 海鞘纳米纤维素气凝胶的制备及其性能研究[D]. 福州:福建农林大学, 2020:66-71.
NING Dengwen. Preparation and properties of tunicate nanocellulose aerogels[D]. Fuzhou: Fujian Agriculture and Forestry University, 2020:66-71.
[28] PINTO S C, GONCALVES G, SANDOVAL S, et al. Bacterial cellulose/graphene oxide aerogels with enhanced dimensional and thermal stability[J]. Carbohydrate Polymers, 2020, 230:115598.
doi: 10.1016/j.carbpol.2019.115598
[29] SHAHZADI K, GE X, SUN Y, et al. Fire retardant cellulose aerogel with improved strength and hydrophobic surface by one-pot method[J]. Journal of Applied Polymer Science, 2021, 138(16): 50224.
doi: 10.1002/app.v138.16
[30] GUO L M, CHEN Z L, LYU S Y, et al. Highly flexible cross-linked cellulose nanofibril sponge-like aerogels with improved mechanical property and enhanced flame retardancy[J]. Carbohydrate Polymers, 2018, 179:333-340.
doi: 10.1016/j.carbpol.2017.09.084
[31] 郭丽敏. 增强阻燃型纳米纤维素基气凝胶研究[D]. 北京:中国林业科学研究院, 2018:116-117.
GUO Limin. Study on reinforcing flame retardant cellulose nanofibril based aerogels[D]. Beijing:Chinese Academy of Forestry, 2018:116-117.
[32] ZHOU Z H, YANG Y B, HAN Y Y, et al. In situ doping enables the multifunctionalization of templately synthesized polyaniline@cellulose nanocomposites[J]. Carbohydrate Polymers, 2017, 177:241-248.
doi: 10.1016/j.carbpol.2017.08.136
[33] JIANG F, HSIEH Y L. Cellulose nanofibril aerogels: synergistic improvement of hydrophobicity, strength, and thermal stability via cross-linking with diisocyanate[J]. ACS Applied Materials & Interfaces, 2017, 9(3): 2825-2834.
[34] KAYA M. Super absorbent, light, and highly flame retardant cellulose-based aerogel crosslinked with citric acid.[J] Journal of Applied Polymer Science, 2017, 134(38): 45315-45325.
doi: 10.1002/app.45315
[35] 崔灵燕. 隔热阻燃纳米纤维素/粘土气凝胶的制备与改性[D]. 天津:天津工业大学, 2019:30-34.
CUI Lingyan. Preparation and modification of heat insulation and flame retardant nanocellulose/clay aerogel[D]. Tianjin:Tiangong University, 2019: 30-34.
[36] MEDINA L L, CARSIO F, BERGLUND L A. Recyclable nanocomposite foams of Poly(vinyl alcohol), clay and cellulose nanofibrils-mechanical properties and flame retardancy[J]. Composites Science and Technology, 2019, 182:107762.
doi: 10.1016/j.compscitech.2019.107762
[37] KOKLUKAYA O, CARSIO F, WAGBERG L. Superior flame-resistant cellulose nanofibril aerogels modified with hybrid layer-by-layer coatings[J]. ACS Applied Materials & Interfaces, 2017, 9(34): 29082-29092.
[38] LI Y Z, GRISHKEWICH N, LIU L L, et al. Construction of functional cellulose aerogels via atmospheric drying chemically cross-linked and solvent exchanged cellulose nanofibrils[J]. Chemical Engineering Journal, 2019, 366:531-538.
doi: 10.1016/j.cej.2019.02.111
[1] LI Zhenzhen, ZHI Chao, YU Lingjie, ZHU Hai, DU Mingjuan. Preparation and properties of waste cotton regenerative aerogel/warp-knitted spacer fabric composites [J]. Journal of Textile Research, 2022, 43(01): 167-171.
[2] LUO Xiaolei, LIU Lin, YAO Juming. Preparation and study of pure biomass cellulose aerogels for flame retardancy [J]. Journal of Textile Research, 2022, 43(01): 1-8.
[3] CHEN Zihan, YAO Yongbo, SHENG Junlu, YAN Zhiyong, ZHANG Yumei, WANG Huaping. Preparation and properties of cellulose/calcium alginate blend fiber [J]. Journal of Textile Research, 2021, 42(12): 15-20.
[4] LIU Xinhua, LIU Hailong, FANG Yinchun, YAN Peng, HOU Guangkai. Preparation and properties of flame retardant polyester/cotton blended fabrics by layer-by-layer assemblying polyethylenimine/phytic acid [J]. Journal of Textile Research, 2021, 42(11): 103-109.
[5] CHEN Zhijie, YU Yihao, FU Ye, LEI Pengfei, JIANG Jikang, QI Dongming. Preparation and properties of flexible flame retardant polyamide coated fabric via wet coating [J]. Journal of Textile Research, 2021, 42(11): 110-116.
[6] CHEN Xian, LI Mengmeng, ZHAO Xin, DONG Jie, TENG Cuiqing. Preparation and microstructure control of aerogel fibers based on aramid nanofibers [J]. Journal of Textile Research, 2021, 42(11): 17-23.
[7] WAN Suying, BAO Jianna, WANG Ying, ZHANG Xianming, CHEN Shichang, YANG Zhichao, SHI Jiaoxue, CHEN Wenxing. Melt polycondensation and kinetics of phosphorus containing flame retardant copolyesters [J]. Journal of Textile Research, 2021, 42(11): 9-16.
[8] LIU Shuping, LI Liang, LIU Rangtong, HU Zedong, GENG Changjun. Flame retardant finishing of cotton fabric with tri-aminopropyl triethoxysilane [J]. Journal of Textile Research, 2021, 42(10): 107-114.
[9] HE Ju, LIU Xiaohui, SU Xiaowei, LIN Shenggen, REN Yuanlin. Preparation and properties of viscose fibers modified with star-shaped halogen-free flame retardants [J]. Journal of Textile Research, 2021, 42(10): 34-40.
[10] JIANG Lulu, DENG Meng, WANG Yunyi, LI Jun. Research progress on application of aerogel materials in firefighting clothing [J]. Journal of Textile Research, 2021, 42(09): 187-194.
[11] ZHANG Tingting, XU Kexin, JIN Mengtian, GE Shijie, GAO Guohong, CAI Yixiao, WANG Huaping. Recent progress in preparation of cellulose-based organic-inorganic photocatalysts nanohybrids and it's application in water treatment [J]. Journal of Textile Research, 2021, 42(07): 175-183.
[12] ZHANG Chao, JIANG Zhiming, ZHU Shaotong, ZHANG Chenxi, ZHU Ping. Application of hyperbranched phosphoramide in flame retardant finishing of viscose fabrics [J]. Journal of Textile Research, 2021, 42(07): 39-45.
[13] ZHANG Jiaojiao, LI Yuyang, LIU Yun, DONG Chaohong, ZHU Ping. Flame retardant and antibacterial treatments for cotton-viscose blended fabrics [J]. Journal of Textile Research, 2021, 42(07): 31-38.
[14] LIU Ke, CHEN Shuang, XIAO Ru. Preparation and properties of synergistic flame retardant copolyamide 6 fiber with phosphaphenanthrene group [J]. Journal of Textile Research, 2021, 42(07): 11-18.
[15] XU Kai, TIAN Xing, CAO Ying, HE Yaqi, XIA Yanzhi, QUAN Fengyu. Preparation and property of flame retardant polyester/calcium alginate fiber composites [J]. Journal of Textile Research, 2021, 42(07): 19-24.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 35 -36 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 107 .
[3] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 109 -620 .
[4] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 101 -102 .
[5] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 103 -104 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 105 -107 .
[7] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 108 -110 .
[8] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 111 -113 .
[9] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(03): 7 -8 .
[10] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(03): 9 -10 .